Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free RSS-based indoor localisation using MDCF

As a low-cost distance measurement method, received signal strength (RSS) is often used for indoor wireless sensor localisation. However, RSS values can be easily influenced by multi-path fading, noise and other environmental parameters. This decreases the accuracy and stability of estimated distance. To improve localisation accuracy, this study proposes a multiplicative distance-correction factor (MDCF) to counteract the inaccuracy of estimated distance. In the same indoor environment, the product of this CF and estimated distance is regarded as a good approximation of real distance between unknown node and an anchor node. Then, two location estimated methods based on MDCF (MDCF-grid and MDCF-particle swarm optimisation) are proposed. The experimental results confirm that the proposed location estimation methods can significantly improve localisation accuracy without extra hardware in practical indoor scenarios.

References

    1. 1)
      • 5. Ma, X.H., Bing, Z.G., Tang, Y.Q.: ‘Research on localization technology in wireless sensor networks’, in Lin, S., Huang, X. (Eds.): ‘Advanced research on computer education, simulation and modeling’ (Springer, Berlin Heidelberg, 2011), pp. 392398.
    2. 2)
      • 23. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’, 1995, pp. 19421948.
    3. 3)
      • 3. Correa, A., Barcelo Llado, M., Morell, A., et al: ‘Indoor pedestrian tracking by on-body multiple receivers’, IEEE Sens. J., 2016, 16, (8), pp. 25452553.
    4. 4)
      • 17. Cheng, L., Wu, C., Zhang, Y.: ‘Indoor robot localization based on wireless sensor networks’, IEEE Trans. Consum. Electron., 2011, 57, (3), pp. 10991104.
    5. 5)
      • 13. Zhang, X., Tadrous, J., Everett, E., et al: ‘Angle-of-arrival based beamforming for FDD massive MIMO’. IEEE 2015 49th Asilomar Conf. on Signals, Systems and Computers, 2015.
    6. 6)
      • 24. Eberhart, R., Kennedy, J.: ‘A new optimizer using particle swarm theory’. Int. Symp. on MICRO Machine and Human Science, 1995, pp. 3943.
    7. 7)
      • 9. Thomas, F., Ros, L.: ‘Revisiting trilateration for robot localization’, IEEE Trans. Robot., 2005, 21, (1), pp. 93101.
    8. 8)
      • 6. Mitilineos, S.A., Kyriazanos, D.M., Segou, O.E., et al: ‘Indoor localisation with wireless sensor networks’, Prog. Electromagn. Res., 2010, 109, pp. 441474.
    9. 9)
      • 19. Yun, S., Lee, J., Chung, W., et al: ‘A soft computing approach to localization in wireless sensor networks’, Expert Syst. Appl., 2009, 36, (4), pp. 75527561.
    10. 10)
      • 10. Liu, H., Darabi, H., Banerjee, P., et al: ‘Survey of wireless indoor positioning techniques and systems’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2007, 37, (6), pp. 10671080.
    11. 11)
      • 1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al: ‘Wireless sensor networks: a survey’, Comput. Netw., 2002, 38, (4), pp. 393422.
    12. 12)
      • 18. Sahu, P.K., Wu, E.H., Sahoo, J.: ‘DuRT: dual RSSI trend based localization for wireless sensor networks’, IEEE Sens. J., 2013, 13, (8), pp. 31153123.
    13. 13)
      • 4. Chen, Z., Zhu, Q., Soh, Y.C.: ‘Smartphone inertial sensor-based indoor localization and tracking with iBeacon corrections’, IEEE Trans. Ind. Inf., 2016, 12, (4), pp. 15401549.
    14. 14)
      • 14. Jin, R., Xu, H., Che, Z., et al: ‘Experimental evaluation of reducing ranging-error based on receive signal strength indication in wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (5), pp. 228234.
    15. 15)
      • 15. Paul, A.S., Wan, E.A.: ‘RSSI-based indoor localization and tracking using sigma-point Kalman smoothers’, IEEE J. Sel. Top. Signal Process., 2009, 3, (5), pp. 860873.
    16. 16)
      • 7. Fang, X., Yan, W., Zhang, F., et al: ‘Optimal sensor placement for range-based dynamic random localization’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (12), pp. 15.
    17. 17)
      • 12. Alavi, B., Kaveh, P.: ‘Modeling of the TOA-based distance measurement error using UWB indoor radio measurements’, IEEE Commun. Lett., 2006, 10, (4), pp. 275277.
    18. 18)
      • 8. Oguz-Ekim, P., Gomes, J.P., Xavier, J., et al: ‘An angular approach for range-based approximate maximum likelihood source localization through convex relaxation’, IEEE Trans. Wirel. Commun., 2014, 13, (7), pp. 39513964.
    19. 19)
      • 20. Koyuncu, H., Yang, S.: ‘Improved adaptive localisation approach for indoor positioning by using environmental thresholds with wireless sensor nodes’, IET Wirel. Sens. Syst., 2014, 5, (3), pp. 157165.
    20. 20)
      • 21. Pagano, S., Peirani, S., Valle, M.: ‘Indoor ranging and localisation algorithm based on received signal strength indicator using statistic parameters for wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (5), pp. 243249.
    21. 21)
      • 2. Liu, Y., Zheng, Y.: ‘Location, localization, and localizability: location-awareness technology for wireless networks’ (Springer Science & Business Media, 2010).
    22. 22)
      • 22. Cho, S.Y.: ‘Measurement error observer-based IMM filtering for mobile node localization using WLAN RSSI measurement’, IEEE Sens. J., 2016, 16, (8), pp. 24892499.
    23. 23)
      • 16. Rappaport, T.S.: ‘Wireless communications: principles and practice’ (Prentice-Hall PTR, NJ, 1996).
    24. 24)
      • 11. Mistry, H.P., Nital, N.H.: ‘RSSI based localization scheme in wireless sensor networks: a survey’. IEEE 2015 Fifth Int. Conf. on Advanced Computing & Communication Technologies, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2016.0085
Loading

Related content

content/journals/10.1049/iet-wss.2016.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address