access icon free Outlier detection for wireless sensor networks using density-based clustering approach

Outlier detection (OD) constitutes an important issue for many research areas namely data mining, medicines, and sensor networks. It is helpful mainly in identifying intrusion, fraud, errors, defects, noise and so on. In fact, outlier measurements are essential improvements to quality of information, as they are not conforming to expected normal behaviour. Due to the importance of sensed measurements is collected via wireless sensor networks, a novel OD process dubbed density-based spatial clustering of applications with noise (DBSCAN)-OD has been developed based on the algorithm DBSCAN, as a background for OD. With respect to the classic DBSCAN approach, two processes have been jointly combined, the first of computing parameters, while the second concerns class identification in spatial temporal databases. Through both of these modules, one is able to consider real-time application cases as centralised in the base station for the purpose of separating outliers from normal sensors. For the sake of evaluating the authors proposed solution, a diversity of synthetic databases has been applied as generated from real measurements of Intel Berkeley lab. The reached simulation findings indicate well that their devised method can prove to help effectively in detecting outliers with an accuracy rate of 99%.

Inspec keywords: pattern clustering; spatiotemporal phenomena; wireless sensor networks

Other keywords: DBSCAN algorithm; outlier measurements; DBSCAN-OD; class identification; outlier detection; density-based spatial clustering of applications with noise; spatial temporal databases; Intel Berkeley lab; synthetic databases; information quality improvements; real-time application; wireless sensor networks; density-based clustering

Subjects: Data handling techniques; Wireless sensor networks

References

    1. 1)
      • 5. Zhang, C., Ren, J., Gao, C., et al: ‘Sensor fault detection in wireless sensor networks’. Proc. of the IET Int. Communication Conf. on Wireless Mobile and Computing, 2009, pp. 6669.
    2. 2)
      • 25. Ankerst, M., Breunig, M.M., Kriegel, H.-P., et al: ‘Optics: ordering points to identify the clustering structure’. ACM Sigmod Record, 1999, vol. 28, pp. 4960.
    3. 3)
      • 19. Chitradevi, N., Palanisamy, V., Baskaran, K., et al: ‘Efficient density based techniques for anomalous data detection in wireless sensor networks’, J. Appl. Sci. Eng., 2013, 16, (2), pp. 211223.
    4. 4)
      • 11. Shamshirband, S., Amini, A., Anuar, N.B., et al: ‘D-ficca: a density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks’, Measurement, 2014, 55, pp. 212226.
    5. 5)
      • 10. Jarvis, R.A., Patrick, E.A.: ‘Clustering using a similarity measure based on shared near neighbors’, IEEE Trans. Comput., 1973, 100, (11), pp. 10251034.
    6. 6)
      • 29. Bressen, T.: ‘Consensus decision making’. The change handbook: the definitive resource on todays best methods for engaging whole systems, 2007, pp. 212217.
    7. 7)
      • 27. Hinneburg, A., Keim, D.A.: ‘An efficient approach to clustering in large multimedia databases with noise’. KDD, 1998, vol. 98, pp. 5865.
    8. 8)
      • 26. Daszykowski, M., Walczak, B., Massart, D.L.: ‘Looking for natural patterns in analytical data. 2. Tracing local density with optics’, J. Chem. Inf. Comput. Sci., 2002, 42, (3), pp. 500507.
    9. 9)
      • 16. Hassan, A., Mokhtar, H., Hegazy, O.: ‘A heuristic approach for sensor network outlier detection’, Int. J. Res. Rev. Wirel. Sens. Netw., 2011, 1, (4), pp. 6672.
    10. 10)
      • 15. Mostafaei, H., Shojafar, M.: ‘A new meta-heuristic algorithm for maximizing lifetime of wireless sensor networks’, Wirel. Pers. Commun., 2015, 82, (2), pp. 723742.
    11. 11)
      • 22. Kamal, S., Ramadan, R.A., Fawzy, E.-R.: ‘Smart outlier detection of wireless sensor network’, Facta Univ. Series: Electron. Energ., 2016, 29, (3), pp. 383393.
    12. 12)
      • 8. ABID, A., KACHOURI, A., MAHFOUDHI, A.: ‘Anomaly detection in wsn: critical study with new vision’. Int. Conf. on Automation, Control, Engineering and Computer Science – ACECS, IPCO, 2014.
    13. 13)
      • 12. Madden, S.: ‘Intel Berkeley research lab’. 2004.
    14. 14)
      • 28. Daszykowski, M., Tran, T.N., Drab, K.: ‘Revised dbscan algorithm to cluster data with dense adjacent clusters’, Chemometr. Intell. Lab. Syst., 2013, 120, pp. 9296.
    15. 15)
      • 9. Ahmed, M., Mahmood, A.N., Hu, J.: ‘A survey of network anomaly detection techniques’, J. Netw. Comput. Appl., 2016, 60, pp. 1931.
    16. 16)
      • 34. Katzgraber, H.G.: ‘Random numbers in scientific computing: an introduction’, in‘International Summer School Modern Computational Science’ (Citeseer, 2010).
    17. 17)
      • 24. Ester, M., Kriegel, H.-P., Sander, J., et al: ‘A density-based algorithm for discovering clusters in large spatial databases with noise’. KDD, 1996, vol. 96, pp. 226231.
    18. 18)
      • 18. Ahmadi Livani, M., Alikhany, M., Yadollahzadeh Tabari, M., et al: ‘Outlier detection in wireless sensor networks using distributed principal component analysis’, J. AI Data Mining, 2013, 1, (1), pp. 111.
    19. 19)
      • 4. Khosravi, A., Kavian, Y.: ‘Challenging issues of average consensus algorithms in wireless sensor networks’, IET Wirel. Sens. Syst., 2016, 6, pp. 6066.
    20. 20)
      • 20. Guo, S., Zhang, H., Zhong, Z., et al: ‘Detecting faulty nodes with data errors for wireless sensor networks’, ACM Trans. Sens. Netw. (TOSN), 2014, 10, (3), p. 40.
    21. 21)
      • 32. Efron, B., Tibshirani, R.: ‘Bootstrap methods for standard errors, confidence intervals, other measures of statistical accuracy’, Stat. Sci., 1986, 1, pp. 5475.
    22. 22)
      • 33. Press, W.H., Teukolsky, S.A., Vetterling, W.T., et al: ‘Numerical recipes in C’ (Citeseer, 1996), vol. 2.
    23. 23)
      • 1. Qiu, Y., Cheng, X., Hou, W., et al: ‘On classification of biological data using outlier detection’. 12th Int. Symp. on Operations Research and its Applications in Engineering, Technology and Management (ISORA 2015), 2015, pp. 17.
    24. 24)
      • 30. Luo, X.,, Chang, X.: ‘A novel data fusion scheme using grey model and extreme learning machine in wireless sensor networks’, Int. J. Control Autom. Syst., 2015, 13, (3), pp. 539546.
    25. 25)
      • 21. Ozkan, H., Ozkan, F., Kozat, S.S.: ‘Online anomaly detection under Markov statistics with controllable type-i error’, IEEE Trans. Signal Process., 2016, 64, (6), pp. 14351445.
    26. 26)
      • 2. Zhang, Y.-Y., Chao, H.-C., Chen, M., et al: ‘Outlier detection and countermeasure for hierarchical wireless sensor networks’, IET Inf. Sec., 2010, 4, (4), pp. 361373.
    27. 27)
      • 13. Shamshirband, S., Patel, A., Anuar, N.B., et al: ‘Cooperative game theoretic approach using fuzzy q-learning for detecting and preventing intrusions in wireless sensor networks’, Eng. Appl. Artif. Intell., 2014, 32, pp. 228241.
    28. 28)
      • 6. Zhang, Y., Meratnia, N., Havinga, P.: ‘Outlier detection techniques for wireless sensor networks: a survey’, IEEE Commun. Surv. Tutor., 2010, 12, (2), pp. 159170.
    29. 29)
      • 7. Subramaniam, S., Palpanas, T., Papadopoulos, D., et al: ‘Online outlier detection in sensor data using non-parametric models’. Proc. of the 32nd Int. Conf. on Very Large Data Bases, VLDB Endowment, 2006, pp. 187198.
    30. 30)
      • 31. Appice, A., Ciampi, A., Malerba, D.: ‘Summarizing numeric spatial data streams by trend cluster discovery’, Data Min. Knowl. Discov., 2015, 29, (1), pp. 84136.
    31. 31)
      • 23. Duan, L.: ‘Density-based clustering and anomaly detection’. Business Intelligence-Solution for Business Development, 2012, pp. 7996.
    32. 32)
      • 3. Aggarwal, C.C.: ‘Outlier analysis’, in ‘Data mining’ (Springer International Publishing, 2015), pp. 237263.
    33. 33)
      • 17. Zhang, Y., Hamm, N.A., Meratnia, N., et al: ‘Statistics-based outlier detection for wireless sensor networks’, Int. J. Geograph. Inf. Sci., 2012, 26, (8), pp. 13731392.
    34. 34)
      • 14. Ahmadi, A., Shojafar, M., Hajeforosh, S.F., et al: ‘An efficient routing algorithm to preserve k-coverage in wireless sensor networks’, J. Supercomput., 2014, 68, (2), pp. 599623.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2016.0044
Loading

Related content

content/journals/10.1049/iet-wss.2016.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading