http://iet.metastore.ingenta.com
1887

Tamper-aware authentication framework for wireless sensor networks

Tamper-aware authentication framework for wireless sensor networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Sensor nodes once deployed onto the field are mostly provided with little or no attention making them prone to physical attacks by adversaries. Various security frameworks have been proposed to mitigate tampering; others also ensure authentication of sensor nodes. Energy is a limited resource and as such, the need to develop energy efficient frameworks that ensure authentication and thwart tampering of deployed sensor nodes. In this study, a framework comprising an authentication algorithm with a hardware-based tamper detection and recovery procedure is proposed. An interrupt-driven tamper detection and recovery mechanism is employed to aid the isolation of compromised nodes. MD-5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 hash functions were reviewed and simulation done to select the most energy-efficient option (SHA-224) for use with the authentication algorithm. The proposed framework was compared with other existing authentication frameworks in the area of energy efficiency. The result show that the proposed framework is the most energy-efficient. The proposed framework, TinySec, SenSec and MiniSec were analysed against node subversion and false node attacks; the proposed framework can detect compromised nodes in all two attacks but the rest were only potent against false nodes and not against node subversion.

References

    1. 1)
      • J. Sen .
        1. Sen, J.: ‘A survey on wireless sensor network security’, Int. J. Commun. Netwo. Inf. Secur. (IJCNIS), 2009, 1, (2), pp. 5578.
        . Int. J. Commun. Netwo. Inf. Secur. (IJCNIS) , 2 , 55 - 78
    2. 2)
      • M. Singh , K. Babbar , K.L. Jain .
        2. Singh, M., Babbar, K., Jain, K.L.: ‘A survey on intrusion detection systems in wireless sensor networks’, Int. J. Wirel. Commun. Netw. Technol., 2014, 3, (3), pp. 4043.
        . Int. J. Wirel. Commun. Netw. Technol. , 3 , 40 - 43
    3. 3)
      • W. Ding , B. Laha , S. Yenduri .
        3. Ding, W., Laha, B., Yenduri, S.: ‘First stage detection of compromised nodes in sensor networks’. IEEE Sensors Applications Symp. (SAS) 2010, February 2010, pp. 2025.
        . IEEE Sensors Applications Symp. (SAS) 2010 , 20 - 25
    4. 4)
      • A. Becher , Z. Benenson , M. Dornseif .
        4. Becher, A., Benenson, Z., Dornseif, M.: ‘Tampering with motes: real-world physical attacks on wireless sensor networks’, Secur. Pervasive Comput. Lect. Notes Comput. Sci., 2006, 3934, pp. 104118.
        . Secur. Pervasive Comput. Lect. Notes Comput. Sci. , 104 - 118
    5. 5)
      • S.H. Jokhio , I.A. Jokhio , A.H. Kemp .
        5. Jokhio, S.H., Jokhio, I.A., Kemp, A.H.: ‘Node capture attack detection and defence in wireless sensor networks’, IET Wirel. Sensor Syst., 2012, 2, (3), pp. 161169.
        . IET Wirel. Sensor Syst. , 3 , 161 - 169
    6. 6)
      • A.S. Poornima , B.B. Amberker .
        6. Poornima, A.S., Amberker, B.B.: ‘Secure data collection using mobile data collector in clustered wireless sensor network’, IET Wirel. Sensor Syst., 2011, 1, (2), pp. 8595.
        . IET Wirel. Sensor Syst. , 2 , 85 - 95
    7. 7)
      • M. Saxena . (2007)
        7. Saxena, M.: ‘Security in wireless sensor networks-a layer based classification’ (Department of Computer Science, Purdue University, 2007).
        .
    8. 8)
      • A. Perrig , R. Szewczyk , V. Wen .
        8. Perrig, A., Szewczyk, R., Wen, V., et al: ‘SPINS: security protocols for sensor networks’, Wirel. Netw., 8, (5), pp. 521534.
        . Wirel. Netw. , 5 , 521 - 534
    9. 9)
      • C. Karlof , N. Sastry , D. Wanger .
        9. Karlof, C., Sastry, N., Wanger, D.: ‘TinySec: A link layer security architecture for wireless sensor networks’. Proc. of the 2nd Int. Conf. on Embedded Networked Sensor Systems, 2004.
        . Proc. of the 2nd Int. Conf. on Embedded Networked Sensor Systems
    10. 10)
      • R.D. Corin , G. Rusello , E. Salvadori .
        10. Corin, R.D., Rusello, G., Salvadori, E.: ‘TinyKey: a light-weight architecture for wireless sensor networks securing real-world applications’. Eighth Int. Conf. on Wireless On-Demand Network Systems and Services (WONS), 2011.
        . Eighth Int. Conf. on Wireless On-Demand Network Systems and Services (WONS)
    11. 11)
      • M. Luk , G. Mezzour , A. Perrig .
        11. Luk, M., Mezzour, G., Perrig, A., et al: ‘MiniSec: a secure sensor network communication architecture’. Proc. Of the 6th ACM Int. Conf. of Information Processing in Sensor Networks, 2007.
        . Proc. Of the 6th ACM Int. Conf. of Information Processing in Sensor Networks
    12. 12)
      • M. Shao , S. Zhu , W. Zhang .
        12. Shao, M., Zhu, S., Zhang, W., et al: ‘pDCS: security and privacy support for data-centric sensor networks’, IEEE Trans. Mob. Comput., 2009, 8, (8), pp. 10231038.
        . IEEE Trans. Mob. Comput. , 8 , 1023 - 1038
    13. 13)
      • J. Huang , S. Yanga , C. Daia .
        13. Huang, J., Yanga, S., Daia, C.: ‘An efficient key management scheme for data-centric storage (ERP-DCS) wireless sensor networks’, IERI Procedia, 2013, 4, pp. 2531.
        . IERI Procedia , 25 - 31
    14. 14)
      • V. Shah , S. Sharma .
        14. Shah, V., Sharma, S.: ‘A review of existing security frameworks and encryption methods for wireless sensor networks’, Int. J. Innov. Adv. Comput. Sci. (IJIACS), 2014, 3, (2), pp. 9098.
        . Int. J. Innov. Adv. Comput. Sci. (IJIACS) , 2 , 90 - 98
    15. 15)
      • Y. Liu , X. Tong .
        15. Liu, Y., Tong, X.: ‘Hyperchaotic system-based pseudorandom number generator’, IET Inf. Sec., 2016, 10, (6), pp. 433441.
        . IET Inf. Sec. , 6 , 433 - 441
    16. 16)
      • D.R. Raymond , S.F. Midkiff .
        16. Raymond, D.R., Midkiff, S.F.: ‘Denial-of-Service in wireless sensor networks: attacks and defenses’, IEEE Pervasive Comput., 2008, 7, (1), pp. 7481.
        . IEEE Pervasive Comput. , 1 , 74 - 81
    17. 17)
      • J. Jadidoleslamy .
        17. Jadidoleslamy, J.: ‘A comprehensive comparison of attacks in wireless sensor networks’, Int. J. Comput. Commun. Netw. (IJCCN), 2014, 4, (1), p. 13.
        . Int. J. Comput. Commun. Netw. (IJCCN) , 1 , 13
    18. 18)
      • Y. Wang , G. Attebury , B. Ramamurthy .
        18. Wang, Y., Attebury, G., Ramamurthy, B.: ‘A survey of security issues in wireless sensor networks’, IEEE Commun. Surv. Tutor., 2006, 8, (2), p. 23.
        . IEEE Commun. Surv. Tutor. , 2 , 23
    19. 19)
      • A.J. Odey , D. Li .
        19. Odey, A.J., Li, D.: ‘Low power transceiver design parameters for wireless sensor networks’, Wirel. Sens. Netw., 2012, 4,(10), pp. 243249.
        . Wirel. Sens. Netw. , 10 , 243 - 249
    20. 20)
      • H. Nunoo-Mensah , K.O. Boateng , J.D. Gadze .
        20. Nunoo-Mensah, H., Boateng, K.O., Gadze, J.D.: ‘Comparative analysis of energy usage of hash functions in secured wireless sensor networks’, Int. J. Comput. Appl., 2015, 109, (11), pp. 2023.
        . Int. J. Comput. Appl. , 11 , 20 - 23
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2015.0131
Loading

Related content

content/journals/10.1049/iet-wss.2015.0131
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address