Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust speed measurements with standard wireless devices

Speed measurements are crucial for controlling traffic and in supporting automation of industrial processes. The speed of moving objects is typically measured from a stationary position using time-of-flight or the Doppler effect. Existing approaches require either relatively bulky physical devices or complex signal processing. The authors propose a new method for measuring the speed of (metal) objects moving on a fixed track. The authors’ method is applicable, e.g. to cars on a road, trains on rails, or goods sliding on a conveyor belt. The method relies on the constructive and destructive interference patterns created by the reflections from the moving target. Speed is determined by measuring the signal strength of received messages as perceived by standard wireless devices. The method requires only minimal signal processing and only two commodity wireless transceivers, which are independent of the moving target. The advantages of their system compared to other technologies are reduced size, reduced cost, and in some scenarios robustness.

References

    1. 1)
      • 8. Hatakeyama, K., Sakata, Y., Hashimoto, T., et al: ‘Detection of buried human body by electromagnetic wave reflection’. Int. Symp. on Electromagnetic Compatibility, 1999, pp. 805817.
    2. 2)
      • 11. Oberholzer, G., Sommer, P., Wattenhofer, R.: ‘The spiderbat ultrasound positioning system’. Embedded Networked Sensor Systems (SenSys), 2010, pp. 403404.
    3. 3)
      • 1. Friedlander, B.: ‘Accuracy of source localization using multipath delays’, IEEE Trans. Aerosp. Electron. Syst., 1988, 24, (4), pp. 346359.
    4. 4)
      • 10. Schneider, J., Wattenhofer, R.: ‘Message position modulation for power saving and increased bandwidth in sensor networks’. 10th Int. Conf. on Information Processing in Sensor Networks (IPSN), 2011, 2011, pp. 149150.
    5. 5)
      • 17. Feger, R., Pfeffer, C., Scheiblhofer, W., et al: ‘A 77-ghz cooperative radar system based on multi-channel fmcw stations for local positioning applications’, IEEE Trans. Microw. Theory Tech., 2013, 61, (1), pp. 676684.
    6. 6)
      • 9. Schneider, J., Wattenhofer, R.: ‘Coloring unstructured wireless multi-hop networks’. Proc. of the 28th ACM Symp. on Principles of Distributed Computing, 2009, pp. 210219.
    7. 7)
      • 20. Seifeldin, M., Saeed, A., Kosba, A.E., et al: ‘Nuzzer: a large-scale device-free passive localization system for wireless environments’, IEEE Trans. Mob. Comput., 2013, 12, (7), pp. 13211334.
    8. 8)
      • 18. Youssef, M., Mah, M., Agrawala, A.K.: ‘Challenges: device-free passive localization for wireless environments’. Mobile Computing and Networking (MOBICOM), 2007, pp. 222229.
    9. 9)
      • 26. Kloeden, H., Damak, N., Rasshofer, R.H., et al: ‘Sensor resource management with cooperative sensors for preventive vehicle safety applications’. Sensor Data Fusion: Trends, Solutions, Applications (SDF), 2013 Workshop on, 2013, pp. 16.
    10. 10)
      • 13. Parameswaran, A.T., Husain, M.I., Upadhyaya, S., et al: ‘Is RSSI a reliable parameter in sensor localization algorithms: an experimental study’. Field Failure Data Analysis Workshop (F2DA09), 2009, pp. 510.
    11. 11)
      • 22. Sivaraman, S., Trivedi, M.M.: ‘Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, behavior analysis’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (4), pp. 17731795.
    12. 12)
      • 4. White, W.: ‘Low-angle radar tracking in the presence of multipath’, IEEE Trans. Aerosp. Electron. Syst., 1974, (6), pp. 835852.
    13. 13)
      • 23. Rad, A.G., Dehghani, A., Karim, M.R.: ‘Vehicle speed detection in video image sequences using cvs method’, Int. J. Phys. Sci., 2010, 5, (17), pp. 25552563.
    14. 14)
      • 15. Jin, R., Xu, H., Che, Z., et al: ‘Experimental evaluation of reducing ranging-error based on receive signal strength indication in wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (5), pp. 228234.
    15. 15)
      • 6. Martín, S.R., Genescá, M., Romeu, J., et al: ‘Aircraft tracking by means of the acoustical Doppler effect’, Aerosp. Sci. Technol., 2013, 28, (1), pp. 305314.
    16. 16)
      • 3. Cardinali, R., Colone, F., Ferretti, C., et al: ‘Comparison of clutter and multipath cancellation techniques for passive radar’. IEEE Radar Conf., 2007.
    17. 17)
      • 12. Zanca, G., Zorzi, F., Zanella, A., et al: ‘Experimental comparison of rssi-based localization algorithms for indoor wireless sensor networks’. Real-World Wireless Sensor Networks (REALWSN), 2008, pp. 15.
    18. 18)
      • 28. Wang, S.-H., Chang, R.-S., Tsai, S.-L.: ‘Tracking objects using hexagons in sensor networks’, IET Wirel. Sens. Syst., 2012, 2, (4), pp. 309317.
    19. 19)
      • 5. Roehr, S., Gulden, P., Vossiek, M.: ‘Precise distance and velocity measurement for real time locating in multipath environments using a frequency-modulated continuous-wave secondary radar approach’, IEEE Trans. Microw. Theory Tech., 2008, 56, (10), pp. 23292339.
    20. 20)
      • 7. Coutts, S.D.: ‘Passive localization of moving emitters using out-of-plane multipath’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (2), pp. 584595.
    21. 21)
      • 16. Pagano, S., Peirani, S., Valle, M.: ‘Indoor ranging and localisation algorithm based on received signal strength indicator using statistic parameters for wireless sensor networks’, IET Wirel. Sens. Syst., 5, (5), pp. 243249.
    22. 22)
      • 29. Caracas, A., Kramp, T., Baentsch, M., et al: ‘Mote runner: a multi-language virtual machine for small embedded devices’. Sensor Technologies and Applications (SENSORCOMM), 2009, pp. 117125.
    23. 23)
      • 24. Schaffer, B., Kalverkamp, G., Chaabane, M., et al: ‘A cooperative transponder system for improved traffic safety, localizing road users in the 5 GHz band’, Adv. Radio Sci., 2012, 10, (4), pp. 3944.
    24. 24)
      • 2. Lo, K.W., Ferguson, B.G., Gao, Y., et al: ‘Aircraft flight parameter estimation using acoustic multipath delays’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (1), pp. 259268.
    25. 25)
      • 19. Wilson, J., Patwari, N.: ‘Through-wall tracking using variance-based radio tomography networks’. CoRR, 2009, abs/0909.5417.
    26. 26)
      • 27. Subramaniam, M., Tharmarasa, R., Pelletier, M., et al: ‘Multipath-assisted multitarget tracking using multiframe assignment’. SPIE Optical Engineering + Applications. Int. Society for Optics and Photonics, 2009.
    27. 27)
      • 14. Heurtefeux, K., Valois, F.: ‘Is rssi a good choice for localization in wireless sensor network?’. 26th Int. Conf. on Advanced Information Networking and Applications (AINA), 2012, 2012, pp. 732739.
    28. 28)
      • 21. Mao, X., Inoue, D., Kato, S., et al: ‘Amplitude-modulated laser radar for range and speed measurement in car applications’, IEEE Trans. Intell. Transp. Syst., 2012, 13, (1), pp. 408413.
    29. 29)
      • 25. Schaffer, B., Kalverkamp, G., Biebl, E.: ‘A 2.4 GHz high precision local positioning system based on cooperative roundtrip time of flight ranging’. German Microwave Conf. (GeMIC), 2014, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2015.0130
Loading

Related content

content/journals/10.1049/iet-wss.2015.0130
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address