access icon free Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks

Maintaining high energy efficiency is essential for increasing the lifetime ot wireless sensor networks (WSNs), where the battery of the sensor nodes cannot be routinely replaced. Nevertheless, the energy budget of the WSN strictly relies on the communication parameters, where the choice of both the transmit power as well as of the modulation and coding schemes (MCSs) plays a significant role in maximising the network lifetime (NL). In this paper, we optimise the NL of WNSs by analysing the impact of the physical layer parameters as well as of the signal processing power (SPP) P sp on the NL. We characterise the underlying trade-offs between the NL and bit error ratio (BER) performance for a predetermined set of target signal-to-interference-plus-noise ratio (SINR) values and for different MCSs using periodic transmit-time slot (TS) scheduling in interference-limited WSNs. For a per-link target BER requirement (PLBR) of 10−3, our results demonstrate that a ‘continuous-time’ NL in the range of 0.58 – 4.99 years is achieved depending on the MCSs, channel configurations, and SPI.

Inspec keywords: modulation coding; Rayleigh channels; wireless sensor networks; scheduling; nonlinear programming; convolutional codes; linear programming; energy conservation; decoding; concatenated codes; AWGN channels; telecommunication power management; error statistics; signal processing; quadrature phase shift keying

Other keywords: bit error ratio; TS scheduling; signal processing power; nonlinear energy consumption constraint; SPP; concatenated coding; transmit power; cross-layer network lifetime optimisation; SINR; WSN; per-link target BER requirement; additive white Gaussian noise channel; linear programming problem; energy efficiency; interior point method; MCS; Rayleigh fading channel; signal-to-interference-plus-noise ratio; PLBR; WSN energy budget; nonlinear optimisation problem; convolutional coded soft-decoded quadrature phase-shift keying; sensor nodes battery; NL maximisation; modulation and coding scheme; periodic transmit-time slot scheduling; wireless sensor network

Subjects: Signal processing and detection; Wireless sensor networks; Optimisation techniques; Other topics in statistics; Codes; Electrical/electronic equipment (energy utilisation); Probability theory, stochastic processes, and statistics

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 9. Chen, Y., Yang, Y., Yi, W.: ‘A cooperative routing algorithm for lifetime maximization in wireless sensor networks’. IET Int. Conf. on Wireless Sensor Network, January 2010, pp. 167172. Available at: http://www.digital-library.theiet.org/content/conferences/10.1049/cp.2010.1047.
    5. 5)
    6. 6)
      • 13. Goldsmith, A.: ‘Wireless communications’ (Cambridge University Press, 2005).
    7. 7)
      • 23. Albulet, M.: ‘RF power amplifiers’ (SciTech, Raleigh, NC, 2001).
    8. 8)
    9. 9)
      • 1. Cheng, C.-M., Kung, H.T.: ‘Use of relays in extending network lifetime’. IEEE 60th Vehicular Technology Conf. (VTC'04), Los Angeles, CA, USA, September 2004.
    10. 10)
    11. 11)
      • 22. Zhang, R., Gorce, J.-M.: ‘Optimal transmission range for minimum energy consumption in wireless sensor networks’. IEEE Wireless Communications and Networking Conf. (WCNC'08), Las Vegas, NV, USA, March 2008.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 16. El-Hajjar, M., Hanzo, L.: ‘Exit charts for system design and analysis’, IEEE Commun. Surv. Tutorials, 2013, 16, (1), pp. 127. Available at: http://www.eprints.soton.ac.uk/352320/.
    16. 16)
      • 15. Hanzo, L., Liew, T., Yeap, B.: ‘Turbo coding, turbo equalisation and space-time coding’ (John Wiley & Sons, 2002). Available at: http://www.eprints.soton.ac.uk/258252/.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 5. Hartwell, J., Messier, G., Davies, R.: ‘Optimizing physical layer energy consumption for wireless sensor networks’. IEEE 65th Vehicular Technology Conf. (VTC'07), Dublin, Ireland, April 2007.
    21. 21)
    22. 22)
      • 2. Duan, D., Qu, F., Yang, L., Swami, A., Principe, J.: ‘Modulation selection from a battery power efficiency perspective: a case study of PPM and OOK’. IEEE Wireless Communications and Networking Conf. (WCNC'09), Budapest, Hungary, April 2009.
    23. 23)
      • 6. Sklar, B.: ‘Digital communications: fundamentals and applications’ (Prentice-Hall, 2001, 2nd edn.).
    24. 24)
    25. 25)
      • 25. IEEE Standard for Information Technology – Local and Metropolitan Area Networks – Specific Requirements – Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs), Std., September 2006.
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2014.0049
Loading

Related content

content/journals/10.1049/iet-wss.2014.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading