access icon free Reciprocity-based simulation methodology to estimate the power distribution received by electromagnetic energy harvesters

The capability to efficiently harvest power from ambient energy sources is a crucial element for the development of low-maintenance wireless sensor networks. Available energy levels that can be harvested from ambient electromagnetic (EM) sources are rather low (0.1 µW/cm2). Insufficient information about the available EM energy under different working conditions results in poor design decisions, leading to a sub-optimal system design. In this study, a novel and efficient simulation methodology is developed which predicts the statistical distribution of the power harvested by an antenna when immersed in a given (statistical) EM environment. The methodology is used to quantify the impact of the antenna's orientation, location, exact geometry and so on, on the quantity of the harvested energy. The methodology is successfully applied to a realistic energy harvesting antenna in different EM environments (indoor, outdoor etc.)

Inspec keywords: energy harvesting; data acquisition; statistical distributions; wireless sensor networks

Other keywords: statistical distribution; ambient electromagnetic sources; reciprocity-based simulation methodology; power distribution estimation; electromagnetic energy harvesters; ambient energy sources; low-maintenance wireless sensor networks; suboptimal system design

Subjects: Energy harvesting; Data acquisition systems; Probability theory, stochastic processes, and statistics; Wireless sensor networks; Energy harvesting; Other topics in statistics

References

    1. 1)
      • 39. Hill, D.A.: ‘Electromagnetic theory of reverberation chambers’ (NIST, 1998).
    2. 2)
      • 25. Nintanavongsa, P., Muncuk, U.: ‘Design optimization and implementation for RF energy harvesting circuits’, Top. Circuits, 2012, 2, pp. 2433.
    3. 3)
    4. 4)
      • 13. Cammarano, A., Petrioli, C., Spenza, D.: ‘Pro-energy: a novel energy prediction model for solar and wind energy-harvesting wireless sensor networks’. IEEE 9th Int. Conf. on Mobile Ad-Hoc and Sensor Systems, Las Vegas, Nevada, USA, 2012, pp. 7583.
    5. 5)
    6. 6)
    7. 7)
      • 32. Stutzman, W.L., Thiele, G.A.: ‘Antenna theory and design’ (J. Wiley, 1998).
    8. 8)
    9. 9)
      • 17. Sun, Q., Patil, S., Stoute, S., Sun, N.-X., Lehman, B.: ‘Optimum design of magnetic inductive energy harvester and its AC-DC converter’. 2012 IEEE Energy Convers. Congr. Expo., 2012, pp. 394400.
    10. 10)
      • 21. ‘Wireless Power Solutions Powercast Corp’, http://www.powercastco.com/, accessed May 2013.
    11. 11)
    12. 12)
      • 9. Nikolov, D., Manolov, E., Hristov, M., et al: ‘Architecture of energy harvesting devices’, Annu. J. Electron., 2010, 4, pp. 5458.
    13. 13)
    14. 14)
      • 15. Liu, S., Wu, Q., Qiu, Q.: ‘Accurate modeling and prediction of energy availability in energy harvesting real-time embedded systems’. Int. Conf. on Green Computing, 2010, pp. 469476.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 1. Cook, D., Das, S.: ‘Smart environments: technology, protocols and applications’ (John Wiley & Sons, Inc., 2004, 1st. edn.), pp. 118.
    20. 20)
      • 22. Vullers, R., van Schaijk, R., Gyselinckx, B., Van Hoof, C.: ‘Is there a sweet spot for energy harvesting?Device Res. Conf., University Park, PA, USA, 2009, pp. 78.
    21. 21)
    22. 22)
    23. 23)
      • 5. Dondi, D., Napoletano, G., Bertacchini, A., et al: ‘A WSN system powered by vibrations to improve safety of machinery with trailer’. IEEE Sensors, Taipei, Republic of China, 2012, pp. 14.
    24. 24)
      • 38. ‘EMPro 3D EM Simulation Software Keysight’ http://www.keysight.com/en/pc-1297143/empro-3d-em-simulation-software?&cc=BE&lc&=dut, accessed August 2014.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 7. Lu, X., Yang, S.-H.: ‘Thermal energy harvesting for WSNs’. IEEE Int. Conf. on Systems Man and Cybernetics, Istanbul, Turkey, 2010, pp. 30453052.
    30. 30)
    31. 31)
      • 37. Hill, D.A.: ‘Electromagnetic fields in cavities’ (John Wiley & Sons, Inc., 2009), pp. 280.
    32. 32)
      • 34. Weisstein, E.W.: ‘Sphere point picking – from wolfram math world’. (Wolfram Research, Inc. 2013).
    33. 33)
      • 3. Beeby, S., White, N.: ‘Energy harvesting for autonomous systems’, (Artech House, 2010, 1st edn.).
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 14. Moser, C., Brunelli, D., Thiele, L., Benini, L.: ‘Lazy scheduling for energy harvesting sensor nodes’, in Kleinjohann, B., et al : ‘From model-driven design to resource management for distributed embedded systems’, (Springer, US, 2010, 1st edn.), pp. 125134.
    38. 38)
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2013.0140
Loading

Related content

content/journals/10.1049/iet-wss.2013.0140
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading