Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Field operational testing for safety improvement of freight trains using wireless monitoring by sensor network

Today, the majority of wagon failures on railroad systems are because of the poor maintenance of ball bearings, which causes emergent stops and delays. The existing stationary detectors, lack in predicting failures which cause troubles in scheduling maintenance. During the fall of 2011, a trial was performed by applying a wireless sensor network (WSN) aboard a train wagon with the objective to demonstrate a proof of concept for monitoring the temperature of ball bearings aboard the train wagon. This trial investigates several key aspects when applying sensor networks such as radio wave propagation, energy scavenging and performance of the WSN aboard the wagon. Two wireless links were used in the WSN. The aboard network communicates at 2.45 GHz, and the external communication is an 868 MHz radio frequency identification radio link. Since the energy in the WSN node is limited, appropriate energy scavenging devices are also presented and evaluated in a lab environment. Effort has been made to overcome these problems. The energy consumption in the network is still a problem; the most promising energy scavenging technique is piezoelectric harvesting by vibrations, which in the experiments scavenged 2.32 mW.

References

    1. 1)
      • 13. Zherdev, F.: ‘Storing and Reading Sensor Data from Battery Assisted Passive RFID’, Bachelor thesis, Uppsala University, 2011.
    2. 2)
      • 10. Grudén, M.: ‘Wireless Sensor Network and Radio Wave Propagation in Harsh Environments’, Licentiate thesis, Uppsala University, 2012.
    3. 3)
      • 16. Edvinsson, N.-G.: ‘Energy harvesting power supply for wireless sensor networks – investigation of piezo- and thermoelectric micro generators’, Bachelor thesis, Uppsala University, 2012.
    4. 4)
    5. 5)
      • 7. IEEE 802.15.4-2006 – Standard: http://www.standards.ieee.org/getieee802/download/802.15.4-2006.pdf.
    6. 6)
      • 21. Vullers, R.J.M., van Schaijk, R., Doms, I., van Hoof, C., Mertens, R.: ‘Micropower energy harvesting’, Solid-State Electron., 2009, 53, pp. 648693.
    7. 7)
      • 12. Barker, S., Brennan, D., Wright, N.G., Horsfall, A.B.: ‘Piezoelectric-powered wireless sensor system with regenerative transmit mode’, Wireless Sensor systems, IET, 2010.
    8. 8)
      • 15. Hinnemo, M., Gruden, M., Rydberg, A.: ‘Design of a miniaturized patch antenna for easy deployment on metal surfaces’, Microw. Opt. Technol. Lett., 2013, 55, pp. 723727 (doi: 10.1002/mop.27437).
    9. 9)
      • 17. Laird Technologies: ‘Thermoelectric Handbook’, Available in internet, http://www.lairdtech.com/temhandbook/.
    10. 10)
      • 4. Grudén, M., Westman, A., Platbardis, J., Hallbjörner, P., Rydberg, A.: ‘Reliability experiments for wireless sensor networks in train environment’. Wireless Technology Conf., 2009 (EuWIT 2009), European, 28–29 September 2009, pp. 3740.
    11. 11)
      • 3. Reason, J.M.: ‘Ambient intelligence for freight railroads’, IBM J. Res. Dev., 2009, 53, (3), pp. 6:16:14.
    12. 12)
      • 1. Huifen, L., Lui, F., Hou, Y.: ‘Railway hazardous articles monitoring system based on wireless sensor network’. Proc. 2010 Second Int. Conf. on Information Engineering and Computer Science (ICIECS), 25–26 December 2010, pp. 14.
    13. 13)
      • 11. ‘Contiki: the operating system for embedded smart objects – the internet of things’, http://www.sics.se/contiki.
    14. 14)
      • 2. Donelson III, J., Dicus, R.L.: ‘Bearing detection using on.board accelerometer measurements’. Railroad Conf. 2002 ASME/IEEE Joint, 23–25 April 2002, pp. 95102.
    15. 15)
      • 6. Balanis, C.A.: ‘Antenna theory – analysis and design’ (John Wiley & Sons, New Jersey, 2005, 3rd edn.).
    16. 16)
      • 10. Grudén, M.: ‘Wireless Sensor Network and Radio Wave Propagation in Harsh Environments’, Licentiate thesis, Uppsala University, 2012.
    17. 17)
      • 18. Rowe, M.D.: ‘CRC handbook of thermoelectrics’ (CRC Press LCC, USA, 2004), ISBN 0-534-40896-6.
    18. 18)
      • 20. Perpetuum datasheet: Available on: http://www.perpetuum.com/resources/PMG%20FSH%20Datasheet.pdf, 2013-09-03.
    19. 19)
      • 8. EPC Global (2008) version 1.2.9 EPC Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz–960 MHz. http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf.
    20. 20)
      • 16. Edvinsson, N.-G.: ‘Energy harvesting power supply for wireless sensor networks – investigation of piezo- and thermoelectric micro generators’, Bachelor thesis, Uppsala University, 2012.
    21. 21)
      • 19. Midé, Midé Volture Datasheet 001, Available on: http://www.mide.com/pdfs/Volture_Datasheet_001.pdf Impinj Inc. (2009), Data sheets, http://www.impinj.com/.
    22. 22)
      • 5. Grudén, M., Jobs, M., Rydberg, A.: ‘Diversity techniques for robustness and power awareness in wireless sensor systems for railroad transport application’, Seah, W., Tan, Y.K. (Eds.) ISBN: 978-953-307-297-5, InTech, 2010.
    23. 23)
      • 14. Sakaguchi, K., Hasabe, N.: ‘A small microstrip antenna consisting of a slot cut radiatorand short pins’. Proc. Seventh Int. Conf. on Antennas and Propagation, 1991 ICAP, 15–18 April 1991.
    24. 24)
      • 9. Jarboe, G., Smith, M., Treadwat, C., Evans, D.: ‘Networking complete’ (Sybex Inc., Alameda, California, USA, 2002, 3rd edn.).
    25. 25)
      • 13. Zherdev, F.: ‘Storing and Reading Sensor Data from Battery Assisted Passive RFID’, Bachelor thesis, Uppsala University, 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2013.0048
Loading

Related content

content/journals/10.1049/iet-wss.2013.0048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address