Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Sleeping ZigBee networks at the application layer

ZigBee/IEEE 802.15.4 is one of the most used standards for low-power applications. However, full function devices must be always active to route data in a mesh network. The objective of this work is to implement a sleeping technique at the application layer that enables sleep mode for all nodes of a ZigBee network. A time synchronisation mechanism to deal with the clock drift of the sensor nodes was developed. The technique also enables the recovery of lost messages. A large network is organised into smaller groups to reduce latency and packet collisions. The active interval of each node is dynamically adapted to the network operation to optimise the energy consumption. The proposed technique was applied to a real testbed and the increase in energy efficiency was evaluated. The results demonstrated energy savings of about 95% for networks containing up to 20 nodes per group and wake up periods longer than 2 min.

References

    1. 1)
    2. 2)
    3. 3)
      • 26. Texas Instruments, ‘A True System-On-Chip Solution for 2.4 GHz IEEE 802.15.4/ZigBee’, CC2430 datasheet. (rev. 2.1).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 27. Texas Instruments, ‘Z-Stack Developer's Guide’, Document Number: F8 W-2006-0022, 2007.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 27. Texas Instruments, ‘Z-Stack Developer's Guide’, Document Number: F8 W-2006-0022, 2007.
    14. 14)
      • 3. Zairi, S., Zouari, B., Niel, E., Dumitrescu, E.: ‘Nodes self-scheduling approach for maximising wireless sensor network lifetime based on remaining energy’, IET Wirel. Sens. Syst., 2012, 2, (1), pp. 5263 (doi: 10.1049/iet-wss.2011.0074).
    15. 15)
      • 23. Cho, H., Jang, H., Baek, Y.: ‘Time synchronization via clock skew correction on ZigBee networks’. Int. Conf. Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, November 2010, pp. 137138.
    16. 16)
      • 6. Jurdak, R., Ruzzelli, A.G., O'Hare, G.M.P.: ‘Radio sleep mode optimization in wireless sensor networks’, IEEE Trans. Mob. Comput., 2010, 9, (7), pp. 955968 (doi: 10.1109/TMC.2010.35).
    17. 17)
      • 1. Jennifer Yick, D.G., Mukherjee, B.: ‘Wireless sensor network survey’, Comput. Netw., 2008, 52, pp. 22922330 (doi: 10.1016/j.comnet.2008.04.002).
    18. 18)
      • 11. Estrin, D., Heidemann, J., Ye, W.: ‘An energy-efficient MAC protocol for wireless sensor networks’. Proc.IEEE 21th Annual Joint Conf. IEEE Computer and Communications Societies, INFOCOM 2002, 2002, vol. 3, pp. 15671576.
    19. 19)
      • 26. Texas Instruments, ‘A True System-On-Chip Solution for 2.4 GHz IEEE 802.15.4/ZigBee’, CC2430 datasheet. (rev. 2.1).
    20. 20)
      • 17. Ollos, G., Vida, R.: ‘Sleep scheduling protocol for mobile WSNs’. IEEE 73rd Vehicular Technology Conf., Budapest, Hungary, May 2011, pp. 15.
    21. 21)
      • 18. Brazil, M.N., Ras, C.J., Thomas, D.A.: ‘Relay augmentation for lifetime extension of wireless sensor networks’, IET Wirel. Sens. Syst., 2013, 3, (2), pp. 145152 (doi: 10.1049/iet-wss.2012.0126).
    22. 22)
      • 2. Nan, G., Shi, G., Mao, Z., Li, M.: ‘CDSWS: coverage-guaranteed distributed sleep/wake scheduling for wireless sensor networks’, EURASIP J. Wirel. Commun. Netw., 2012, 44, pp. 114.
    23. 23)
      • 7. ZigBee: Web page. http://www.ZigBee.org, accessed 2012-06-13.
    24. 24)
      • 12. Langendoen, K., van Dam, T.: ‘An adaptive energy-efficient MAC protocol for wireless sensor networks’. Proc. First ACM Conf. Embedded Networked Sensor Systems (SenSys'03), November 2003, pp. 171180.
    25. 25)
      • 5. Keh, H.-C., Wang, Y.-H., Lin, K.-Y., Lin, C.-C.: ‘Power saving mechanism with optimal sleep control in wireless sensor networks’, Tamkang J. Sci. Eng., 2011, 14, (3), pp. 235243.
    26. 26)
      • 13. Lu, G., Krishnamachari, B., Raghavendra, C.S.: ‘An adaptive energy-efficient and low-latency MAC for tree-based data gathering in sensor networks’, Wirel. Commun. Mob. Comput., 2007, 7, pp. 86387 (doi: 10.1002/wcm.503).
    27. 27)
      • 14. Buettner, M., Yee, G.V., Anderson, E., Han, R.: ‘X-mac: a short preamble mac protocol for duty-cycled wireless sensor networks’. Proc.Fourth Int. Conf. Embedded Net-Worked Sensor Systems (SenSys'06), Boulder, CO, USA, 2006, pp. 307320.
    28. 28)
      • 10. Anastasi, G., Conti, M., Di Francesco, M.: ‘Extending the lifetime of wireless sensor networks through adaptive sleep’, IEEE Trans. Ind. Inf., 2009, 5, (3), pp. 351365 (doi: 10.1109/TII.2009.2025863).
    29. 29)
      • 21. Schenato, L., Gamba, G.: ‘A distributed consensus protocol for clock synchronization in wireless sensor network’. Proc. 46th IEEE Conf. Decision and Control, New Orleans, LA, USA, December 2007, pp. 22892294.
    30. 30)
      • 22. Greunen, J.V., Rabaey, J.: ‘Lightweight time synchronization for sensor networks’. Proc.Second ACM Int. Workshop Wireless Sensor Networks and Applications (WSNA ’03), San Diego, CA, USA, September 2003, pp. 1119.
    31. 31)
      • 8. Suarez, P., Renmarker, C.-G., Dunkels, A., Voigt, T.: ‘Increasing ZigBee network lifetime with X-MAC’. Proc. Workshop on Real-World Wireless Sensor Networks (REALWSN ’08), Glasgow, Scotland, April 2008, pp. 2630.
    32. 32)
      • 20. Maróti, M., Kusy, B., Simon, G., Lédeczi, A.: ‘The flooding time synchronization protocol’. Proc. Second Int. Conf. Embedded Networked Sensor Systems (SenSys'04), Baltimore, MD, USA, November 2004, pp. 3949.
    33. 33)
      • 25. Sivrikaya, F., Yener, B.: ‘Time synchronization in sensor networks: a survey’, IEEE Netw., 2004, 18, (4), pp. 4550 (doi: 10.1109/MNET.2004.1316761).
    34. 34)
      • 4. Bulut, E., Korpeoglu, I.: ‘Sleep scheduling with expected common coverage in wireless sensor networks’, Wirel. Netw., 2011, 17, pp. 1940 (doi: 10.1007/s11276-010-0262-2).
    35. 35)
      • 19. Ganeriwal, S., Kumar, R., Srivastava, M.B.: ‘Timing-sync protocol for sensor networks’. The First ACM Conf. Embedded Networked Sensor System (SenSys'03), Los Angeles, CA, USA, November 2003, pp. 138149.
    36. 36)
      • 16. Gao, D., Niu, Y., Yang, O.W.W.: ‘Synchronous sleep and wake in IP-enabled wireless sensor networks’. Canadian Conf. Electrical and Computer Engineering (CCECE ’09), NF, Canada, May 2009, pp. 161164.
    37. 37)
      • 9. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: ‘Energy conservation in wireless sensor networks: a survey’, Ad Hoc Netw., 2009, 7, pp. 537568 (doi: 10.1016/j.adhoc.2008.06.003).
    38. 38)
      • 15. Timmons, N.F., Scanlon, W.G.: ‘Improving the ultra-low-power performance of IEEE 802.15.6 by adaptive synchronization’, IET Wirel. Sensor Syst., 2011, 1, (3), pp. 161170 (doi: 10.1049/iet-wss.2011.0036).
    39. 39)
      • 24. IEEE Standards 802, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), 2006.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2013.0024
Loading

Related content

content/journals/10.1049/iet-wss.2013.0024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address