Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Solar energy harvesting for autonomous field devices

The energy required to power an autonomous field device can be drawn from its environment by means of energy harvesting. Outdoors, one abundant and ubiquitous source of energy is solar irradiation, which can be reliably converted into electricity by solar cells. In principle, this is also true indoors if artificial light sources produce sufficient optical irradiation. Different solar cell materials can play off their individual strengths in these different use cases. Since ambient optical irradiation usually is an intermittent phenomenon, a solar powered field device has to include an energy storage solution for bridging gaps that occur in energy harvesting. In this study, different solar cell materials and energy storage solutions are discussed and evaluated quantitatively according to data sheet information. According to calculations for an assumed continuous power consumption of an autonomous field device of 1 mW for a period of 10 years, a solar panel of 4 × 4 cm² in the outdoor case and 20 × 20 cm² in the indoor case can deliver the required energy. Along with an energy storage system consisting of a 100 F supercapacitor and a primary backup cell, solar energy harvesting for autonomous field devices seems technically feasible.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 30. Data Sheet of LTC3525-5 step-up converter from Linear Technology. Available at http://www.linear.com/docs/9338, accessed January 2013.
    8. 8)
      • 3. Ulrich, M., König, K., Kaul, H., Nenninger, P.: ‘Autonomous wireless sensors for process instrumentation’. GMA/ITG – Fachtagung: Sensoren und Messsysteme, Nuremberg, Germany, May 2012, pp. 499507.
    9. 9)
      • 19. IEC 61853-1, Photovoltaic (PV) module performance testing and energy rating – Part 1: irradiance and temperature performance measurements and power rating, 2011.
    10. 10)
      • 20. Linden, D., Reddy, T.B.: ‘Handbook of batteries’ (McGraw-Hill Handbooks, New York, 2002, 3rd edn.).
    11. 11)
      • 27. Müller, M., Wienold, J., Walker, W.D., Reindl, L.M.: ‘Characterization of indoor photovoltaic devices and light’. Proc. 34th IEEE Photovoltaic Specialists Conf., Philadelphia, USA, June 2009, pp. 000738000743.
    12. 12)
      • 28. Randall, J., Bharatula, N.B., Perera, N., von Büren, T., Ossevoort, S., Tröster, G.: ‘Indoor tracking using solar cell powered system: interpolation of irradiance’. Proc. Sixth Int. Conf. on Ubiquitous Computing, Nottingham, UK, September 2004.
    13. 13)
      • 17. Randall, J.F.: ‘Designing indoor solar products’ (John Wiley & Sons, Hoboken, 2005).
    14. 14)
      • 4. Ghamari, M., Heravi, B.M., Roedig, U., Honary, B., Pickering, C.A.: ‘Improving transmission reliability of low-power medium access control protocols using average diversity combining’, IET Wirel. Sens. Syst., 2012, 2, pp. 377384 (doi: 10.1049/iet-wss.2012.0029).
    15. 15)
      • 29. Zinßer, B.: ‘Jahresenergieerträge unterschiedlicher Photovoltaik-Technologien bei verschiedenen klimatischen Bedingungen’. PhD thesis, Universität Stuttgart, 2010, In German.
    16. 16)
      • 24. Maxwell Technologies: ‘Ultracapacitor life duration estimation – application note 1012389’ (Maxwell Technologies, San Diego, 2007).
    17. 17)
      • 8. Krejcar, O., Mahdal, M.: ‘Optimized solar energy power supply for remote wireless sensors based on IEEE 802.15.4 standard’, Int. J. Photoenergy, 2012, 305102, pp. 19 (doi: 10.1155/2012/305102).
    18. 18)
      • 13. Available at http://www.schott.com/photovoltaic/english/download/tm_55_006_14_asi_oem_outdoor.pdf, and http://www.solems.com/IMG/pdf/TD-series_solar_modules.pdf, both accessed May 2012.
    19. 19)
      • 26. NASA – SSE (Surface meteorology and Solar Energy). Available at http: //www.eosweb.larc.nasa.gov/sse/, accessed May 2012.
    20. 20)
      • 25. Data Sheets of Tadiran Lithium Batteries, Model TL-4930 (D cell). Available at http://www.tadiranbat.com/pdf.php?id=TL-4930, accessed January 2013.
    21. 21)
      • 18. Reich, N.H., van Sark, W.G.J.H.M., Alsema, E.A., et al: ‘Weak light performance and spectral response of different solar cell types’. Proc. 20th European Photovoltaic Solar Energy Conf., Barcelona, Spain, June 2005, pp. 21202123.
    22. 22)
      • 16. REN21: Renewables 2012 Global Status Report, REN21 Secretariat, 2012, Paris.
    23. 23)
      • 7. Yi, G., Guiling, S., Weixiang, L.: ‘Wireless sensor node design based on solar energy supply’. Proc. Second Int. Conf. on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, China, December 2009, pp. 203207.
    24. 24)
      • 5. Timmons, N.F., Scanlon, W.G.: ‘Improving the ultra-low-power performance of IEEE 802.15.6 by adaptive synchronization’, IET Wirel. Sens. Syst., 2011, 1, pp. 161170 (doi: 10.1049/iet-wss.2011.0036).
    25. 25)
      • 11. Saggini, S., Ongaro, F., Galperti, C., Mattavelli, P.: ‘Supercapacitor-based hybrid storage systems for energy harvesting in wireless sensor networks’. Proc. 25th Applied Power Electronics Conf. Exposition (APEC), Palm Springs, USA, February 2010, pp. 22812287.
    26. 26)
      • 23. http://www.evanscap.com/the_capattery.htm, http://www.evanscap.com/capattery.htm, and http://www.evanscap.com/capattery_pricing.htm, all accessed January 2013.
    27. 27)
      • 14. ABB products TotalFlow. Available at http://www.abb.com/totalflow, and AquaMaster 3 http://www.abb.com/product/seitp330/86a2f24a4eab24c9c12577fb004f57fe.aspx, both accessed January 2013.
    28. 28)
      • 10. Yongtai, H., Lihui, L., Yanqiu, L.: ‘Design of solar photovoltaic micro-power supply for application of wireless sensor nodes in complex illumination environments’, IET Wirel. Sens. Syst., 2012, 2, pp. 1621 (doi: 10.1049/iet-wss.2011.0078).
    29. 29)
      • 9. Gaudette, B., Hanumaiah, V., Vrudhula, S., Krunz, M.: ‘Optimal range assignment in solar powered active wireless sensor networks’. IEEE Proc. INFOCOM, Orlando, USA, March 2012, pp. 23542362.
    30. 30)
      • 2. Ulrich, M., Nenninger, P., Nurnus, J.: Energieautarker drahtloser temperaturtransmitter, atp edition 2011, 10, pp. 54–60. In German.
    31. 31)
      • 6. Glatz, P.M., Hörmann, L.B., Steger, C., Weiss, R.: ‘Designing sustainable wireless sensor networks with effcient energy harvesting systems’. IEEE WCNC 2011 – Service and Application, Quintana-Roo, Mexico, March 2011, pp. 20182023.
    32. 32)
      • 22. Data Sheet of HC Series Ultracapacitors and Product Guide from Maxwell Technologies. Available at http://www.maxwell.com/products/ultracapacitors/docs/datasheet_hc_series_1013793.pdf, and http://www.maxwell.com/products/ultracapacitors/docs/1014627_boostcap_product_guide.pdf, both accessed January 2013.
    33. 33)
      • 1. Muller, I., Netto, J.C., Pereira, C.E.: ‘WirelessHART field devices’, IEEE Instrum. Meas. Mag., 2011, 14, pp. 2025 (doi: 10.1109/MIM.2011.6086896).
    34. 34)
      • 21. Data sheet for solid-state lithium battery Thinergy MEC202 from Infinite Power Solutions. Available at http://www.infinitepowersolutions.com/images/stories/downloads/controlled_documents/DS1015.pdf, accessed January 2013.
    35. 35)
      • 12. Ongaro, F., Saggini, S., Mattavelli, P.: ‘Li-Ion battery-supercapacitor hybrid storage system for a long lifetime, photovoltaic-based wireless sensor network’, IEEE Trans. Power Electron., 2012, 27, pp. 39443952 (doi: 10.1109/TPEL.2012.2189022).
    36. 36)
      • 15. Luque, A., Hegedus, S. (Eds.): ‘Handbook of photovoltaic science and engineering’ (John Wiley & Sons, Hoboken, 2012).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2013.0011
Loading

Related content

content/journals/10.1049/iet-wss.2013.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address