access icon free Application-specific spectrum sensing method for cognitive sensor networks

The authors address an important aspect of spectrum sensing that has been often overlooked in the cognitive radio (CR) research. Although CR is supposed to be aware of its surrounding, most existing articles do not consider the characteristics of secondary users in the optimisation of sensing period. In this study, based on a continuous-time Markov chain model for cognitive sensor networks and energy detection method, the authors propose an application-specific spectrum sensing method that obtains the optimal sensing period according to the characteristics of both ‘primary and secondary’ users (hybrid scheme). The authors define and analytically derive two parameters, the interference ratio and the undetected opportunity ratio, and analytically find the optimum sensing period. Numerical and simulation results indicate that our proposed method is able to provide an optimal sensing period, that is customised for different cognitive networks. The proposed method significantly increases the system throughput by up to 11% and reduces the network's power consumption by as low as 33%. Finally, the trade-off between the throughput maximisation and power consumption minimisation is discussed.

Inspec keywords: wireless sensor networks; telecommunication power management; radiofrequency interference; continuous time systems; Markov processes; cognitive radio; minimisation; signal detection; radio spectrum management

Other keywords: optimal sensing period; CR; interference ratio; sensing period optimisation; primary and secondary users; application specific spectrum sensing method; network power consumption reduction; undetected opportunity ratio; cognitive sensor networks; energy detection method; hybrid scheme; cognitive radio; continuous-time Markov chain model; power consumption minimisation; throughput maximisation

Subjects: Signal detection; Optimisation techniques; Wireless sensor networks; Markov processes; Electromagnetic compatibility and interference

References

    1. 1)
      • 10. Song, J., Feng, Z., Zhang, P., Liu, Z.: ‘Spectrum sensing in cognitive radios based on enhanced energy detector’, IET Commun., 2012, 6, (8), pp. 805809 (doi: 10.1049/iet-com.2010.0536).
    2. 2)
      • 8. Liang, Z., Feng, S., Zhao, D., Shen, X.: ‘Delay performance analysis for supporting real-time traffic in a cognitive radio sensor network’, IEEE Trans. Wirel. Commun., 2011, 10, pp. 325335 (doi: 10.1109/TWC.2010.111910.100804).
    3. 3)
      • 4. Zahmati, A.S., Hussain, S., Fernando, X., Grami, A.: ‘Cognitive wireless sensor networks: emerging topics and recent challenges’. Proc. IEEE TIC-STH, 2009, pp. 593596.
    4. 4)
      • 6. Pascale, A., Nicoli, M., Deflorio, F., Dalla Chiara, B., Spagnolini, U.: ‘Wireless sensor networks for traffic management and road safety’, IET Intell. Transp. Syst., 2012, 6, pp. 6777 (doi: 10.1049/iet-its.2010.0129).
    5. 5)
      • 1. FCC: ‘Spectrum policy task force’. ET Docket No. 02-135, November 2002.
    6. 6)
      • 17. Tang, H.: ‘Some physical layer issues of wide-band cognitive radio systems’. Proc. IEEE DySPAN, 2005, pp. 151159.
    7. 7)
      • 13. Zhang, Y., Zhang, Q., Wu, S.: ‘Entropy-based robust spectrum sensing in cognitive radio’, IET Commun., 2010, 4, pp. 428436 (doi: 10.1049/iet-com.2009.0389).
    8. 8)
      • 2. Mitola, III, J., Maguire, G.Q.: ‘Cognitive radio: making software radios more personal’, IEEE Pers. Commun., 1999, 6, (4), pp. 1318 (doi: 10.1109/98.788210).
    9. 9)
      • 7. Karim, L., Nasser, N.: ‘Reliable location-aware routing protocol for mobile wireless sensor network’, IET Commun., 2012, 6, (14), pp. 21492158 (doi: 10.1049/iet-com.2011.0696).
    10. 10)
      • 15. Ghasemi, A., Sousa, E.: ‘Collaborative spectrum sensing for opportunistic access in fading environments’. Proc. IEEE DySPAN, 2005, pp. 131136.
    11. 11)
      • 18. Zahmati, A.S., Fernando, X., Grami, A.: ‘Steady-state Markov chain analysis for heterogeneous cognitive radio networks’. Proc. IEEE Sarnoff Symp., 2010, pp. 15.
    12. 12)
      • 9. Chen, Y., Woo, W.L., Wang, C.X.: ‘Channel modeling of information transmission over cognitive interrogator-sensor networks’, IEEE Trans. Veh. Technol., 2011, 60, pp. 215 (doi: 10.1109/TVT.2010.2089545).
    13. 13)
      • 19. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (John Wiley & Sons, Inc. New York, 1991).
    14. 14)
      • 14. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutor., 2009, 11, pp. 116130 (doi: 10.1109/SURV.2009.090109).
    15. 15)
      • 16. Digham, F., Alouini, M.S., Simon, M.: ‘On the energy detection of unknown signals over fading channels’. Proc. IEEE ICC, 2003, pp. 35753579.
    16. 16)
      • 12. Lopez-Benitez, M., Casadevall, F.: ‘Improved energy detection spectrum sensing for cognitive radio’, IET Commun., 2012, 6, (8), pp. 785796 (doi: 10.1049/iet-com.2010.0571).
    17. 17)
      • 11. Shen, J., Liu, S., Wang, Y., Xie, G., Rashvand, H., Liu, Y.: ‘Robust energy detection in cognitive radio’, IET Commun., 2009, 3, pp. 10161023 (doi: 10.1049/iet-com.2008.0107).
    18. 18)
      • 5. Rashvand, H., Yi, W., Cui, L.: ‘Wireless sensor networks WSN’, IET Wirel. Sens. Syst., 2011, 1, pp. 179180 (doi: 10.1049/iet-wss.2011.0174).
    19. 19)
      • 3. Maleki, S., Pandharipande, A., Leus, G.: ‘Energy-efficient distributed spectrum sensing for cognitive sensor networks’, IEEE Sens. J., 2011, 11, (3), pp. 565573 (doi: 10.1109/JSEN.2010.2051327).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2013.0006
Loading

Related content

content/journals/10.1049/iet-wss.2013.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading