http://iet.metastore.ingenta.com
1887

ZebraBAN: a heterogeneous high-performance energy efficient wireless body sensor network

ZebraBAN: a heterogeneous high-performance energy efficient wireless body sensor network

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently, there are much research on wireless body sensor network (WBSN) as the growing demands of pervasive health and personal entertainment. Supporting high-speed data transmission becomes a challenge in development of WBSN in medical and entertainment applications. In this study, the authors present ZebraBAN, a high-speed low-power WBSN based on single-carrier ultra-wideband (SC-UWB) and IEEE 802.15.4. The heterogeneous network combines the strengths of SC-UWB and IEEE 802.15.4 technologies while offsetting their weakness. Like SC-UWB, the system achieves medium to high data rate and reduces radiation and power consumption at a low cost. Like IEEE 802.15.4, ZebraBAN achieves low data rate and low latency under low contention. In ZebraBAN, the authors introduce the idea of control plane and data plane for controlling multiple PHYs and MACs according to energy and data rate balance. Experimental results based on the prototype system are presented to evaluated the network performance. The result demonstrates that high reliability transmission for every sensor data stream within 4 m around the person, with a low-power consumption for fabricated application specific integrated circuits (ASIC) about 8.2 mW when it works on transmitting one channel video. The network has a peak capacity of 100 Mbps that could support multiple sensor nodes, including four channel video stream and multiple low-speed sensor datas.

References

    1. 1)
      • S. Goldberg , N. Wickramasinghe .
        1. Goldberg, S., Wickramasinghe, N.: ‘21st century healthcare: the wireless panacea’. Proc. 36th Hawaii Int. Conf. on Systems Sciences (HICSS'03), Huawaii, USA, 6–9 January 2003.
        . Proc. 36th Hawaii Int. Conf. on Systems Sciences (HICSS'03)
    2. 2)
      • R. Chávez-Santiago , A. Khaleghi , I. Balasingham , T. Ramstad .
        2. Chávez-Santiago, R., Khaleghi, A., Balasingham, I., Ramstad, T.: ‘Architecture of an ultra wideband wireless body area network for medical applications’. Proc. Second IEEE Int. Symp. on Applied Sciences in Biomedical and Communication Technologies, 2009 (ISABEL 2009), 2009, pp. 16.
        . Proc. Second IEEE Int. Symp. on Applied Sciences in Biomedical and Communication Technologies, 2009 (ISABEL 2009) , 1 - 6
    3. 3)
      • M. Yuce , H. Keong , M. Chae .
        3. Yuce, M., Keong, H., Chae, M.: ‘Wideband communication for implantable and wearable systems’, IEEE Trans. Microw. Theory Tech., 2009, 57, (10), pp. 25972604 (doi: 10.1109/TMTT.2009.2029958).
        . IEEE Trans. Microw. Theory Tech. , 10 , 2597 - 2604
    4. 4)
      • M. Yuce , W. Liu , J. Chae , M.S. Kim .
        4. Yuce, M., Liu, W., Chae, J., Kim, M.S.: ‘A wideband telemetry unit for multi-channel neural recording systems’. IEEE Int. Conf. on Ultra-Wideband, Singapore, 24–26 September 2007, pp. 612617.
        . IEEE Int. Conf. on Ultra-Wideband , 612 - 617
    5. 5)
      • (2006)
        5. I. TG: ‘IEEE Std. 802.15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low data rate wireless personal area networks (WPAN)’ (Piscataway, NJ, USA, 2006).
        .
    6. 6)
      • H.-B. Li , R. Kohno .
        6. Li, H.-B., Kohno, R.: ‘Introduction of sg-ban in ieee 802.15 with related discussion’. IEEE Int. Conf. on Ultra-Wideband, 2007 (ICUWB 2007), Singapore, 24–26 September 2007, pp. 134139.
        . IEEE Int. Conf. on Ultra-Wideband, 2007 (ICUWB 2007) , 134 - 139
    7. 7)
      • Z. Xiao , N. Ge , Y. Pei , D. Jin .
        7. Xiao, Z., Ge, N., Pei, Y., Jin, D.: ‘SC-UWB: a low-complexity uwb technology for portable devices’. 2011 IEEE Int. Conf. on Signal Processing, Communications and Computing (ICSPCC), 2011, pp. 16.
        . 2011 IEEE Int. Conf. on Signal Processing, Communications and Computing (ICSPCC) , 1 - 6
    8. 8)
      • Z. Xiao , C. Zhang , N. Ge , D. Jin .
        8. Xiao, Z., Zhang, C., Ge, N., Jin, D.: ‘Introduction of sc-uwb proposal’. 2011 IEEE Int. Conf. Computational Problem-Solving (ICCP), 2011, pp. 698702.
        . 2011 IEEE Int. Conf. Computational Problem-Solving (ICCP) , 698 - 702
    9. 9)
      • P. Johansson , M. Kazantzidis , R. Kapoor , M. Gerla .
        9. Johansson, P., Kazantzidis, M., Kapoor, R., Gerla, M.: ‘Bluetooth: an enabler for personal area networking’, IEEE Netw., 2001, 15, (5), pp. 2837 (doi: 10.1109/65.953231).
        . IEEE Netw. , 5 , 28 - 37
    10. 10)
      • J. Lim , B. Jang .
        10. Lim, J., Jang, B.: ‘Dynamic duty cycle adaptation to real-time data in ieee 802.15. 4 based wsn’. Proc. Fifth IEEE Consumer Communications and Networking Conf., 2008 (CCNC 2008), 2008, pp. 353357.
        . Proc. Fifth IEEE Consumer Communications and Networking Conf., 2008 (CCNC 2008) , 353 - 357
    11. 11)
      • J. Jeon , J. Lee , J. Ha , W. Kwon .
        11. Jeon, J., Lee, J., Ha, J., Kwon, W.: ‘DCA: duty-cycle adaptation algorithm for ieee 802.15. 4 beacon-enabled networks’. IEEE 65th Vehicular Technology Conf., 2007 (VTC2007), 2007, pp. 110113.
        . IEEE 65th Vehicular Technology Conf., 2007 (VTC2007) , 110 - 113
    12. 12)
      • J. Lee .
        12. Lee, J.: ‘Performance evaluation of ieee 802.15. 4 for low-rate wireless personal area networks’, IEEE Trans. Consum. Electron., 2006, 52, (3), pp. 742749 (doi: 10.1109/TCE.2006.1706465).
        . IEEE Trans. Consum. Electron. , 3 , 742 - 749
    13. 13)
      • C. Li , H. Li , R. Kohno .
        13. Li, C., Li, H., Kohno, R.: ‘Performance evaluation of ieee 802.15. 4 for wireless body area network (WBAN)’. IEEE Int. Conf. on Communications Workshops, 2009 (ICC Workshops 2009), 2009, pp. 15.
        .
    14. 14)
      • G. Anastasi , M. Conti , M. Di Francesco .
        14. Anastasi, G., Conti, M., Di Francesco, M.: ‘A comprehensive analysis of the mac unreliability problem in ieee 802.15. 4 wireless sensor networks’, IEEE Trans. Ind. Inf., 2011, 7, (1), pp. 5265 (doi: 10.1109/TII.2010.2085440).
        . IEEE Trans. Ind. Inf. , 1 , 52 - 65
    15. 15)
      • S. Ullah , K. Kwak .
        15. Ullah, S., Kwak, K.: ‘An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network’, J. Med. Syst., 2012, 36, (3), pp. 1021 (doi: 10.1007/s10916-010-9564-2).
        . J. Med. Syst. , 3 , 1021
    16. 16)
      • S. Marinkovic , C. Spagnol , E. Popovici .
        16. Marinkovic, S., Spagnol, C., Popovici, E.: ‘Energy-efficient tdma-based mac protocol for wireless body area networks’. Proc. Third IEEE Int. Conf. Sensor Technologies and Applications, 2009 (SENSORCOMM'09), 2009, pp. 604609.
        . Proc. Third IEEE Int. Conf. Sensor Technologies and Applications, 2009 (SENSORCOMM'09) , 604 - 609
    17. 17)
      • Y. Tselishchev , L. Libman , A. Boulis .
        17. Tselishchev, Y., Libman, L., Boulis, A.: ‘Reducing transmission losses in body area networks using variable tdma scheduling’. Proc. 2011 IEEE Int. Symp. on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2011, pp. 110.
        . Proc. 2011 IEEE Int. Symp. on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) , 1 - 10
    18. 18)
      • G. Zhou , J. Lu , C. Wan , M. Yarvis , J. Stankovic .
        18. Zhou, G., Lu, J., Wan, C., Yarvis, M., Stankovic, J.: ‘Bodyqos: adaptive and radio-agnostic qos for body sensor networks’. Proc. 27th IEEE Conf. Computer Communications (INFOCOM 2008), 2008, pp. 565573.
        . Proc. 27th IEEE Conf. Computer Communications (INFOCOM 2008) , 565 - 573
    19. 19)
      • S. Ullah , P. Khan , N. Ullah , K.S. Kwak .
        19. Ullah, S., Khan, P., Ullah, N., Kwak, K.S.: ‘Mac-bridging for multi-phys communication in ban’, Sensors, 2010, 10, (11), pp. 99199934 (doi: 10.3390/s101109919).
        . Sensors , 11 , 9919 - 9934
    20. 20)
      • (2011)
        20. NXP Company: ‘Jn5139 wireless microcontroller’ (NXP Laboratories UK, 2011).
        .
    21. 21)
      • A. Ganz , Z. Ganz , K. Wongthavarawat . (2004)
        21. Ganz, A., Ganz, Z., Wongthavarawat, K.: ‘IEEE 802.15, in multimedia wireless networks: Technologies, Standards and QoS’ (Pearsons Education, 2004).
        .
    22. 22)
      • N. Timmons , W. Scanlon .
        22. Timmons, N., Scanlon, W.: ‘Analysis of the performance of ieee 802.15. 4 for medical sensor body area networking’. Proc. 2004 First Annual IEEE Communications Society Conf. on Sensor and Ad Hoc Communications and Networks, 2004 (IEEE SECON 2004), 2004, pp. 1624.
        . Proc. 2004 First Annual IEEE Communications Society Conf. on Sensor and Ad Hoc Communications and Networks, 2004 (IEEE SECON 2004) , 16 - 24
    23. 23)
      • Y. Zhang , G. Dolmans .
        23. Zhang, Y., Dolmans, G.: ‘A new priority-guaranteed mac protocol for emerging body area networks’. Proc. Fifth Int. Conf. on Wireless and Mobile Communications, 2009 (ICWMC'09), 2009, pp. 140145.
        . Proc. Fifth Int. Conf. on Wireless and Mobile Communications, 2009 (ICWMC'09) , 140 - 145
    24. 24)
      • C. Li , L. Wang , J. Li , B. Zhen , H. Li , R. Kohno .
        24. Li, C., Wang, L., Li, J., Zhen, B., Li, H., Kohno, R.: ‘Scalable and robust medium access control protocol in wireless body area networks’. Proc. 2009 IEEE 20th Int. Symp. on Personal, Indoor and Mobile Radio Communications, 2009, pp. 21272131.
        . Proc. 2009 IEEE 20th Int. Symp. on Personal, Indoor and Mobile Radio Communications , 2127 - 2131
    25. 25)
      • M. Klemm , G. Troester .
        25. Klemm, M., Troester, G.: ‘Textile uwb antennas for wireless body area networks’, IEEE Trans. Antennas Propag., 2006, 54, (11), pp. 31923197 (doi: 10.1109/TAP.2006.883978).
        . IEEE Trans. Antennas Propag. , 11 , 3192 - 3197
    26. 26)
      • B. Sanz-Izquierdo , J. Batchelor , M. Sobhy .
        26. Sanz-Izquierdo, B., Batchelor, J., Sobhy, M.: ‘Compact uwb wearable antenna’. Loughborough Antennas and Propagation Conf., 2007 (LAPC 2007), 2007, pp. 121124.
        . Loughborough Antennas and Propagation Conf., 2007 (LAPC 2007) , 121 - 124
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2012.0164
Loading

Related content

content/journals/10.1049/iet-wss.2012.0164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address