access icon free Energy-prediction scheduler for reconfigurable systems in energy-harvesting environment

Energy harvesting has been demonstrated to be a promising approach to mitigating energy constraints. Unlike battery-based energy, available system energy significantly varies for energy-harvesting systems. Partial dynamic reconfiguration is adopted as an effective approach for accelerating wireless sensor network (WSN) applications. Although a reconfigurable system can achieve better performance compared with software implementation, reconfiguration potentially requires a large amount of energy and time, particularly for cases where reconfiguration occurs frequently. To address this issue, a novel weather-aware scheduler based on the weather-conditioned moving average (WCMA) prediction algorithm is proposed in this study. To demonstrate the authors approach, a heterogeneous reconfigurable node is also proposed. The implementation of the proposed approach can improve reconfigurable system performance by up to 50% under energy-harvesting conditions. The novelty of this work is 2-fold. First, a prototype is adopted to demonstrate its efficiency for WSN. Second, a novel scheduler is proposed to manage hardware reconfiguration. In the scheduler, WCMA is used to predict future harvested energy.

Inspec keywords: energy harvesting; wireless sensor networks; scheduling

Other keywords: weather-conditioned moving average; reconfigurable systems; wireless sensor network; WSN; WCMA prediction algorithm; hardware reconfiguration; energy prediction scheduler; partial dynamic reconfiguration; weather-aware scheduler; energy harvesting systems

Subjects: Energy harvesting; Wireless sensor networks

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 11. Sedcole, P., Peter, Y.K., George, C., et al: ‘Run-time integration of reconfigurable video processing systems’, IEEE Trans. VLSI Syst., 2007, 15, (9), pp. 10031016 (doi: 10.1109/TVLSI.2007.902203).
    11. 11)
      • 8. Yang, X., Zhang, Y., Liu, D., et al: ‘Single instruction multiple data code auto generation for a very long instruction words digital signal processor in sensor-based systems’, IET Wirel. Sensor Syst., 2013, 3, (2), pp. 119125 (doi: 10.1049/iet-wss.2012.0114).
    12. 12)
      • 25. Mysore, S., Agrawal, B., Chong, F., et al: ‘Exploring the processor and ISA design for wireless sensor network applications’. Proc. of VLSI'08, Hyderabad, India, 2008, pp. 5964.
    13. 13)
      • 18. Nahapetian, A., Brisk, P., Ghiasi, S., Sarrafzadeh, M.: ‘An approximation algorithm for scheduling on heterogeneous reconfigurable resources’. ACM Transactions on Embedded Computing Systems (TECS), USA, 2009, Vol. 9, No. 5.
    14. 14)
      • 9. Portilla, J., Otero, A., de la Torre, E., et al: ‘Adaptable security in wireless sensor networks by using reconfigurable ECC hardware coprocessors’, Int. J. Distributed Sensor Netw., 2010, 2010, doi: 10.1155/2010/740823.
    15. 15)
      • 23. Horta, E.L., Lockwood, J.W.: ‘Automated method to generate bitstream intellectual property cores for Virtex FPGAs’. Proc. FPL04, Leuven, Belgium, 2004, pp. 975979.
    16. 16)
      • 15. Krasteva, Y.E., Portilla, J., de la Torre, E., et al: ‘Embedded runtime reconfigurable nodes for wireless sensor networks applications’, IEEE Sens. J., 2011, 11, (9), pp. 18001810 (doi: 10.1109/JSEN.2011.2104948).
    17. 17)
      • 21. Piorno, J.R., Bergonzini, C., Atienza, D., et al: ‘Prediction and management in energy harvested wireless sensor nodes’. First Int. Conf. on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, 2009 (Wireless VITAE 2009), 2009, pp. 610.
    18. 18)
      • 19. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: ‘Power management in energy harvesting sensor networks’. ACM Transactions on Embedded Computing Systems (TECS) – Special Section LCTES'05, USA, 2007, Vol. 6, No. 32.
    19. 19)
      • 4. Decker, A.: ‘Solar energy harvesting for autonomous field devices’, IET Wirel. Sensor Syst., 2013, pp. 8, DOI: 10.1049/iet-wss.2013.0011, Available online: 05 September 2013.
    20. 20)
      • 3. Allavena, A., Mossé, D.: ‘Scheduling of frame-based embedded systems with rechargeable batteries’. Proc. of IEEE Workshop on Power Management for Real-Time and Embedded Systems, Taipei, Taiwan, 2001, pp. 1218.
    21. 21)
      • 1. Jiang, X., Polastre, J., Culler, D.: ‘Perpetual environmentally powered sensor networks’. Proc. of the Fourth Int. Symp. on Information Processing in Sensor Networks, Los Angeles, California, USA, 2005, pp. 463468.
    22. 22)
      • 2. Paradiso, J.A., Starner, T.: ‘Energy scavenging for mobile and wireless electronics’, IEEE Pervasive Comput., 2005, 4, (1), pp. 1827 (doi: 10.1109/MPRV.2005.9).
    23. 23)
      • 12. Nahapetian, A., Lombardo, P., Acquaviva, A., et al: ‘Dynamic reconfiguration in sensor networks with regenerative energy sources’. Proc. of DATE ‘07 Proc. of the Conference on Design, Automation and Test in Europe, USA, 2007, pp. 10541059.
    24. 24)
      • 6. Berder, O., Sentieys, O.: ‘PowWow: power optimized hardware/software framework for wireless motes’. Proc. of the 2010 23rd Int. Conf. on Architecture of Computing Systems (ARCS), Hannover, Germany, 22–25 February 2010, pp. 15.
    25. 25)
      • 20. Li, Y., Jia, Z., Xie, S., Liu, F.: ‘Dynamically reconfigurable hardware with a novel scheduling strategy in energy-harvesting sensor networks’, IEEE Sens. J., 2013, 13, (5), pp. 20322038 (doi: 10.1109/JSEN.2013.2247038).
    26. 26)
      • 10. Becker, J., Hubner, M., Hettich, G., et al: ‘Dynamic and partial FPGA exploitation’, Proc. IEEE, 2007, 95, (2), pp. 438–452 (doi: 10.1109/JPROC.2006.888404).
    27. 27)
      • 13. Philipp, F., Glesner, M.: ‘Mechanisms and architecture for the dynamic reconfiguration of an advanced wireless sensor node’. Proc. of the Int. Conf. on Field Programmable Logic and Applications, New Delhi, India, 12–14 December 2011, pp. 396398.
    28. 28)
      • 5. Pantazis, N., Vergados, D.: ‘A survey on power control issues in wireless sensor networks’. Proc. of IEEE Communivatons Surveys and Tutorials, 2007, vol. 9, pp. 86107.
    29. 29)
      • 16. Valverde, J., Otero, A., Lopez, M., et al: ‘Using SRAM based FPGAs for power-aware high performance wireless sensor networks’, Sensors, 2012, 12, (3), pp. 26672692 (doi: 10.3390/s120302667).
    30. 30)
      • 22. Sedcole, P., Blodget, B., Becker, T., et al: ‘Modular dynamic reconfiguration in Virtex FPGAs’, IEE Proc.-Comput. Digit. Tech., 2006, 153, (3), pp. 157164 (doi: 10.1049/ip-cdt:20050176).
    31. 31)
      • 17. Li, Y., Jia, Z., Liu, F.: ‘Hardware reconfigurable wireless sensor network node with power and area efficiency’, IET Wirel. Sens. Syst., 2012, 2, (3), pp. 247252 (doi: 10.1049/iet-wss.2011.0162).
    32. 32)
      • 14. Garcia, R., Gordon-Ross, A., George, A.D.: ‘Exploiting partially reconfigurable FPGAs for situation-based reconfiguration in wireless sensor networks’. Proc. of the IEEE Symp. on Field Programmable Custom Computing Machines, Napa, CA, USA, 5–7 April 2009, pp. 243246.
    33. 33)
      • 7. Durante, M.S., Mahlknecht, S.: ‘An ultra low power wakeup receiver for wireless sensor nodes’. Proc. of the 2009 Third Int. Conf. on Sensor Technologies and Applications, Athens, Glyfada, 18–23 June 2009, pp. 167170.
    34. 34)
      • 24. Nazhandali, L., Minuth, M., Austin, T.: ‘Sense bench: toward an accurate evaluation of sensor network processors’. Proc. of IISWC, Austin, TX, 2005, pp. 197203.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2012.0129
Loading

Related content

content/journals/10.1049/iet-wss.2012.0129
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading