Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks

Traditional routing protocols are no longer suitable for the energy harvesting-wireless sensor networks (EH-WSN), which is powered by the energy harvested from environment instead of batteries. Rather than minimising the energy consumption and maximising the network lifetime, the main challenge in EH-WSN is to maximise its working performance under energy harvesting constraints. In this study, the authors propose a centralised power efficient routing algorithm energy harvesting genetic-based unequal clustering-optimal adaptive performance routing algorithm (EHGUC-OAPR) which contains two parts: (i) energy harvesting genetic-based unequal clustering algorithm EHGUC and (ii) optimal adaptive performance routing algorithm (OAPR). First, the base station (BS) uses EHGUC algorithm to form clusters of unequal size and select associated cluster heads, in which the clusters closer to the BS have smaller size. Then, the BS adopts OAPR algorithm to construct an optimal routing among each cluster heads. The numerical results show that EHGUC-OAPR is not only well applied to EH-WSN, but also has a great improvement in network energy balance and data delivery ratio.

References

    1. 1)
      • 17. Hussain, S., Matin, A.W., Islam, O.: ‘Genetic algorithm for energy efficient clusters in wireless sensor networks’. Proc. Fourth Int. Conf. Information Technology, 2007, pp. 147154.
    2. 2)
      • 14. Saleem, M., Ullah, I., Farooq, M.: ‘BeeSensor: an energy-efficient and scalable routing protocol for wireless sensor networks’, Inf. Sci., 2012, 200, pp. 3856 (doi: 10.1016/j.ins.2012.02.024).
    3. 3)
      • 5. Lin, L., Shroff, N.B., Srikant, R.: ‘Asymptotically optimal energy-aware routing for multihop wireless networks with renewable energy sources’, IEEE/ACM Trans. Netw., 2007, 15, (5), pp. 112 (doi: 10.1109/TNET.2007.896173).
    4. 4)
      • 6. Zhi, A.E., Tan, H.P., Seah, W.K.G.: ‘Opportunistic routing in wireless sensor networks powered by ambient energy harvesting’, Comput. Netw., 2010, 54, (17), pp. 29432966 (doi: 10.1016/j.comnet.2010.05.012).
    5. 5)
      • 1. Alippi, C., Galperti, C.: ‘An adaptive system for optimal solar energy harvesting in wireless sensor network nodes’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2008, 55, (6), pp. 17421750 (doi: 10.1109/TCSI.2008.922023).
    6. 6)
      • 8. Tutuncuoglu, K., Yener, A.: ‘Optimum transmission policies for battery limited energy harvesting nodes’, IEEE Trans. Wirel. Commun., 2012, 11, (3), pp. 11801189 (doi: 10.1109/TWC.2012.012412.110805).
    7. 7)
      • 2. Shen, X., Bo, C., Zhang, J., Tang, S., Mao, X., Dai, G.: ‘EFCon: energy flow control for sustainable wireless sensor networks’. Ad Hoc Netw., 2011, pp. 111.
    8. 8)
      • 16. Huruiala, P.C., Andreea, U., Laura, G.: ‘Hierarchical routing protocol based on evolutionary algorithms for wireless sensor networks’. Proc. Int. Conf. Roedunet, 2010, pp. 387392.
    9. 9)
      • 13. Zungeru, A.M., Ang, L.M., Seng, K.P.: ‘Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison’, J. Netw. Comput. Appl., 2012, 35, (5), pp. 15081536 (doi: 10.1016/j.jnca.2012.03.004).
    10. 10)
      • 11. Hasenfratz, D., Meier, A., Moser, C., Chen, J.J., Thiele, L.: ‘Analysis, comparison, and optimization of routing protocols for energy harvesting wireless sensor networks’. Proc. IEEE Int. Conf. Sensor Networks, Ubiquitous, and Trustworthy Computing, 2010, pp. 1926.
    11. 11)
      • 10. Lattanzi, E., Regini, E., Acquaviva, A., Bogliolo, A.: ‘Energetic sustainability of routing algorithms for energy-harvesting wireless sensor networks’, Comput. Commun., 2007, 30, (14–15), pp. 29762986 (doi: 10.1016/j.comcom.2007.05.035).
    12. 12)
      • 4. Noh, D.G., Kim, J., Lee, J., Lee, D.G., Kwon, H., Shin, H.S.: ‘Priority-based routing for solar-powered wireless sensor networks’. Proc. Int. Symp. Wireless Pervasive Computing, 2007, pp. 5358.
    13. 13)
      • 3. Ongaro, F., Saggini, S.: ‘Li-ion battery-supercapacitor hybrid storage system for a long lifetime, photovoltaic based wireless sensor network’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 39443952. (doi: 10.1109/TPEL.2012.2189022).
    14. 14)
      • 12. Chakraborty, A., Mitra, S.K., Naskar, M.K.: ‘A Genetic algorithm inspired routing protocol for wireless sensor networks’, Int. J. Comput. Intell. Theory Pracitce, 2011, 6, (1), pp. 110.
    15. 15)
      • 9. Bogliolo, A., Lattanzi, E., Acquaviva, A.: ‘Energetic sustainability of environmentally powered wireless sensor networks’. Proc. Third ACM Int. Workshop Performance evaluation of Wireless Ad Hoc, Sensor and Ubiquitous Networks, 2006, pp. 149152.
    16. 16)
      • 18. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: ‘Energy-efficient communication protocol for wireless microsensor networks’. Proc. Int. Conf. Hawaii System Sciences, 2000, 1, (8), pp. 30053014.
    17. 17)
      • 15. Saleem, M., Khayam, S.A., Farooq, M.: ‘A formal performance modeling framework for bio-inspired ad-hoc routing protocols’. Proc. ACM Conf. Genetic and Evolutionary Computation, 2008, pp. 103110.
    18. 18)
      • 7. Chu, H.C., Siao, W.T., Wu, W.T., Huang, S.C.: ‘Design and implementation an energy-aware routing mechanism for solar wireless sensor networks’. Proc. IEEE Int. Conf. High Performance Computing and Communications, 2011, pp. 881886.
    19. 19)
      • 19. Latiff, N.M.A., Tsimenidis, C.C., Sharif, B.S.: ‘Energy-aware clustering for wireless sensor networks using particle swarm optimization’. Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, 2007, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2012.0117
Loading

Related content

content/journals/10.1049/iet-wss.2012.0117
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address