http://iet.metastore.ingenta.com
1887

GRATA: gradient-based traffic-aware routing for wireless sensor networks

GRATA: gradient-based traffic-aware routing for wireless sensor networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a distributed traffic-aware routing scheme is proposed for a wireless sensor network with multiple sinks. In multi-sink networks, traffic moving towards one sink may congest that moving towards others. The algorithm proposed here considers the traffic of surrounding neighbours before jumping to any sink. This is accomplished by building for each single sink, a gradient field and using gradient-based search for routing. The gradient index of one node contains two parts. (i) The first represents the distance-cost to travel, based on routing over lossy link) proposed by an IETF working group. (ii) The second contains the implicit traffic delay carried by the current holding node. Gradient field is built in distributed way and proven to free from loops. In a simulation, the authors show that this method of building gradient field routes balances the shortest path and possible congestion made by sinks, especially in heavy traffic networks, thereby reducing the overall end-to-end delay.

References

    1. 1)
      • K. Akkaya , M. Younis .
        1. Akkaya, K., Younis, M.: ‘A survey on routing protocols for wireless sensor networks’, Ad Hoc Netw., 2005, 3, pp. 325349 (doi: 10.1016/j.adhoc.2003.09.010).
        . Ad Hoc Netw. , 325 - 349
    2. 2)
      • V. Shah-Mansouri , A.-H. Mohsenian-Rad , V. Wong .
        2. Shah-Mansouri, V., Mohsenian-Rad, A.-H., Wong, V.: ‘Lexicographically optimal routing for wireless sensor networks with multiple sinks’, IEEE Trans. Veh. Technol., 2009, 58, (3), pp. 14901500 (doi: 10.1109/TVT.2008.928898).
        . IEEE Trans. Veh. Technol. , 3 , 1490 - 1500
    3. 3)
      • I. Slama , B. Jouaber , D. Zeghlache .
        3. Slama, I., Jouaber, B., Zeghlache, D.: ‘Energy efficient scheme for large scale wireless sensor networks with multiple sinks’. Wireless Communications and Networking Conf., 31 April 3 2008, pp. 23672372.
        . Wireless Communications and Networking Conf. , 2367 - 2372
    4. 4)
      • H. Yoo , M. Shim , D. Kim , K.H. Kim .
        4. Yoo, H., Shim, M., Kim, D., Kim, K.H.: ‘Global: A gradient-based routing protocol for load-balancing in large-scale wireless sensor networks with multiple sinks’. IEEE Symp. on Computers and Communications (ISCC), June 2010, pp. 556562.
        . IEEE Symp. on Computers and Communications (ISCC) , 556 - 562
    5. 5)
      • B. Danila , Y. Yu , S. Earl , J.A. Marsh , Z. Toroczkai , K.E. Bassler .
        5. Danila, B., Yu, Y., Earl, S., Marsh, J.A., Toroczkai, Z., Bassler, K.E.: ‘Congestion-gradient driven transport on complex networks’, Phys. Rev. E, 2006, 74, pp. 046114 (doi: 10.1103/PhysRevE.74.046114).
        . Phys. Rev. E , 046114
    6. 6)
      • L. Makowski , A. Michalski .
        6. Makowski, L., Michalski, A.: ‘Selected aspects of wireless sensors network protocol designs and their practical use [instrumentation notes]’, IEEE Instrum. Meas. Mag., 2010, 13, (5), pp. 4549 (doi: 10.1109/MIM.2010.5585074).
        . IEEE Instrum. Meas. Mag. , 5 , 45 - 49
    7. 7)
      • T. Watteyne , K. Pister , D. Barthel , M. Dohler , I. Auge-Blum .
        7. Watteyne, T., Pister, K., Barthel, D., Dohler, M., Auge-Blum, I.: ‘Implementation of gradient routing in wireless sensor networks’. Proc. 28th IEEE Conf. on Global Telecommunications, Ser. GLOBECOM, 2009, pp. 53315336.
        . Proc. 28th IEEE Conf. on Global Telecommunications, Ser. GLOBECOM , 5331 - 5336
    8. 8)
      • 8. IETF ROLL WG, ‘RPL: routing protocol for low power and lossy networks’. IETF Internet-Draft. IETF ROLL WG, Ser. 8 March, 2010.
        . IETF Internet-Draft. IETF ROLL WG, Ser
    9. 9)
      • A. Willig .
        9. Willig, A.: ‘Recent and emerging topics in wireless industrial communications: a selection’, IEEE Trans. Ind. Inf., 2008, 4, (2), pp. 02124 (doi: 10.1109/TII.2008.923194).
        . IEEE Trans. Ind. Inf. , 2 , 02 - 124
    10. 10)
      • F. De Pellegrini , D. Miorandi , S. Vitturi , A. Zanella .
        10. De Pellegrini, F., Miorandi, D., Vitturi, S., Zanella, A.: ‘On the use of wireless networks at low level of factory automation systems’, IEEE Trans. Ind. Inf., 2006, 2, pp. 129143 (doi: 10.1109/TII.2006.872960).
        . IEEE Trans. Ind. Inf. , 129 - 143
    11. 11)
      • N.Q. Dinh , T.D. Hoa , D.-S. Kim .
        11. Dinh, N.Q., Hoa, T.D., Kim, D.-S.: ‘Distributed traffic aware routing with multiple sinks in wireless sensor networks’. Ninth IEEE Int. Conf. on Industrial Informatics (INDIN), July 2011, pp. 404409.
        . Ninth IEEE Int. Conf. on Industrial Informatics (INDIN) , 404 - 409
    12. 12)
      • S.D. Servetto , G. Barrenechea .
        12. Servetto, S.D., Barrenechea, G.: ‘Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks’. Proc. First ACM Int. Workshop on Wireless Sensor Networks and Applications, ser. WSNA2002, pp. 1221.
        . Proc. First ACM Int. Workshop on Wireless Sensor Networks and Applications, ser. WSNA , 12 - 21
    13. 13)
      • C. Intanagonwiwat , R. Govindan , D. Estrin , J. Heidemann , F. Silva .
        13. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: ‘Directed diffusion for wireless sensor networking’, IEEE/ACM Trans. Netw., 2003, 11, (1), pp. 216 (doi: 10.1109/TNET.2002.808417).
        . IEEE/ACM Trans. Netw. , 1 , 2 - 16
    14. 14)
      • P. Huang , H. Chen , G. Xing , Y. Tan .
        14. Huang, P., Chen, H., Xing, G., Tan, Y.: ‘SGF: a state-free gradient-based forwarding protocol for wireless sensor networks’, ACM Trans. Sensor Netw. (TOSN), 2009, 5, pp. 14:114:25.
        . ACM Trans. Sensor Netw. (TOSN) , 14:1 - 14:25
    15. 15)
      • J. Suhonen , M. Kuorilehto , M. Hannikainen , T. Hamalainen .
        15. Suhonen, J., Kuorilehto, M., Hannikainen, M., Hamalainen, T.: ‘Cost-aware dynamic routing protocol for wireless sensor networks - design and prototype experiments’. IEEE 17th Int. Symp. on Personal, Indoor and Mobile Radio Communications, September 2006, pp. 15.
        . IEEE 17th Int. Symp. on Personal, Indoor and Mobile Radio Communications , 1 - 5
    16. 16)
      • P.T.A. Quang , D.-S. Kim .
        16. Quang, P.T.A., Kim, D.-S.: ‘Enhancing real-time delivery of gradient routing for industrial wireless sensor networks’, IEEE Trans. Ind. Inf., 2012, 8, pp. 6168 (doi: 10.1109/TII.2011.2174249).
        . IEEE Trans. Ind. Inf. , 61 - 68
    17. 17)
      • A. Basu , A. Lin , S. Ramanathan .
        17. Basu, A., Lin, A., Ramanathan, S.: ‘Routing using potentials: a dynamic traffic-aware routing algorithm’. Proc. 2003 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications, Ser. SIGCOMM2003, pp. 3748.
        . Proc. 2003 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications, Ser. SIGCOMM , 37 - 48
    18. 18)
      • C. Park , I. Jung .
        18. Park, C., Jung, I.: ‘Traffic-aware routing protocol for wireless sensor networks’. Int. Conf. on Information Science and Applications (ICISA), 2010, pp. 18.
        . Int. Conf. on Information Science and Applications (ICISA) , 1 - 8
    19. 19)
      • V. Lenders , R. Baumann .
        19. Lenders, V., Baumann, R.: ‘Link-diversity routing: a robust routing paradigm for mobile ad hoc networks’. IEEE Wireless Communications and Networking Conf., 2008, pp. 25852590.
        . IEEE Wireless Communications and Networking Conf. , 2585 - 2590
    20. 20)
      • M. Kalantari , M. Shayman .
        20. Kalantari, M., Shayman, M.: ‘Design optimization of multi-sink sensor networks by analogy to electrostatic theory’. IEEE Wireless Communications and Networking Conf., April 2006, vol. 1, pp. 431438.
        . IEEE Wireless Communications and Networking Conf. , 431 - 438
    21. 21)
      • H. Liu , Z.-L. Zhang , J. Srivastava , V. Firoiu .
        21. Liu, H., Zhang, Z.-L., Srivastava, J., Firoiu, V.: ‘Pwave: a multi-source multi-sink anycast routing framework for wireless sensor networks’. Proc. Sixth Int. IFIP-TC6 Conf. on Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, Ser. NETWORKING2007, pp. 179190.
        . Proc. Sixth Int. IFIP-TC6 Conf. on Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, Ser. NETWORKING , 179 - 190
    22. 22)
      • L. Xia , X. Chen , X. Guan . (2004)
        22. Xia, L., Chen, X., Guan, X.: ‘A new gradient-based routing protocol in wireless sensor networks’ in Embedded Software and Systems (SpringerBerlin/Heidelberg, (LNCS)2004), pp. 318325.
        .
    23. 23)
      • J. Faruque , K. Psounis , A. Helmy .
        23. Faruque, J., Psounis, K., Helmy, A.: ‘Analysis of gradient-based routing protocols in sensor networksin Distributed Computing in Sensor Systems, First IEEE International Conference, 2005, pp. 258275.
        . in Distributed Computing in Sensor Systems, First IEEE International Conference , 258 - 275
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2012.0083
Loading

Related content

content/journals/10.1049/iet-wss.2012.0083
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address