http://iet.metastore.ingenta.com
1887

Moment-closure approximations for mass-action models

Moment-closure approximations for mass-action models

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Although stochastic population models have proved to be a powerful tool in the study of process generating mechanisms across a wide range of disciplines, all too often the associated mathematical development involves nonlinear mathematics, which immediately raises difficult and challenging analytic problems that need to be solved if useful progress is to be made. One approximation that is often employed to estimate the moments of a stochastic process is moment closure. This approximation essentially truncates the moment equations of the stochastic process. A general expression for the marginal- and joint-moment equations for a large class of stochastic population models is presented. The generalisation of the moment equations allows this approximation to be applied easily to a wide range of models. Software is available from http://pysbml.googlecode.com/ to implement the techniques presented here.

References

    1. 1)
      • A. Kowald , T.B.L. Kirkwood . A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process. Mutat. Res. , 209 - 236
    2. 2)
      • P.D. Sozou , T.B.L. Kirkwood . A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial dna. J. Theor. Biol. , 573 - 586
    3. 3)
    4. 4)
      • C.S. Gillespie , C.J. Proctor , D.P. Shanley , D.J. Wilkinson , R.J. Boys , T.B.L. Kirkwood . A mathematical model of ageing in yeast. J. Theor. Biol. , 189 - 196
    5. 5)
      • D.E. Nelson , A.E. Ihekwaba , M. Elliott . Oscillations in nf-κb signaling control the dynamics of gene expression. Science , 704 - 708
    6. 6)
      • D.J. Wilkinson . (2006) Stochastic modelling for systems biology.
    7. 7)
    8. 8)
    9. 9)
      • M.A. Gibson , J. Bruck . Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem., A. , 1876 - 1889
    10. 10)
    11. 11)
      • T.R. Kiehl , R.M. Mattheyses , M.K. Simmons . Hybrid simulation of cellular behavior. Bioinformatics , 316 - 322
    12. 12)
      • J. Puchalka , A.M. Kierzek . Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophys. J. , 1357 - 1372
    13. 13)
      • L.A. Goodman . Population growth of the sexes. Biometrics , 212 - 225
    14. 14)
      • P. Whittle . On the use of the normal approximation in the treatment of stochastic processes. J. R. Stat. Soc., B. , 481 - 490
    15. 15)
      • J.H. Matis , T.R. Kiffe . On approximating the moments of the equilibrium distributions of a stochastic logistic model. Biometrics , 980 - 991
    16. 16)
      • G. Marion , E. Renshaw , G. Gibson . Stochastic effects in a model of nematode infection in ruminants. IMA J. Math. Appl. Med. Biol. , 97 - 116
    17. 17)
    18. 18)
      • I. Krishnarajah , G. Marion , G. Gibson . Novel bivariate moment-closure approximations. Math. Biosci. , 2 , 621 - 643
    19. 19)
      • A. Singh , J.P. Hespanha . A derivative matching approach to moment closure for the stochastic logistic model. Bull. Math. Biol. , 1909 - 1925
    20. 20)
      • C.A. Gomez-Uribe , G.C. Verghese . Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations. J. Chem. Phys. , 024109 - 024112
    21. 21)
      • J. Goutsias . Classical versus stochastic kinetics modeling of biochemical reaction systems. Biophys. J. , 7 , 2350 - 2365
    22. 22)
      • M. Hucka , A. Finney , H.M. Sauro . The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics , 524 - 531
    23. 23)
      • B.G. Olivier , J.M. Rohwer , J.-H.S. Hofmeyr . Modelling cellular systems with PySCeS. Bioinformatics , 560 - 561
    24. 24)
      • C.S. Gillespie , D.P. Shanley , D.J. Wilkinson , R.J. Boys , C.J. Proctor , T.B.L. Kirkwood . Tools for the SBML community. Bioinformatics , 628 - 629
    25. 25)
      • E. Renshaw . (1991) Modelling Biological Populations in Space and Time.
    26. 26)
      • C.J. Proctor , C. Soti , R.J. Boys . Modelling the actions of chaperones and their role in ageing. Mech. Ageing Dev. , 119 - 131
    27. 27)
      • N. Le Novere , B. Bornstein , A. Broicher . BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. , D689 - D691
    28. 28)
      • T.B.L. Kirkwood , R.J. Boys , C.S. Gillespie , C.J. Proctor , D.P. Shanley , D.J. Wilkinson . Towards an e-biology of ageing: integrating theory and data. Nat. Rev. Mole. Cell Bio. , 243 - 249
    29. 29)
      • I. Krishnarajah , A. Cook , G. Marion , G. Gibson . Novel moment closure approximations in stochastic epidemics. Bull. Math. Biol. , 855 - 873
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb_20070031
Loading

Related content

content/journals/10.1049/iet-syb_20070031
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address