http://iet.metastore.ingenta.com
1887

Inference of gene networks from temporal gene expression profiles

Inference of gene networks from temporal gene expression profiles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Genes interact with each other in complex networks that enable the processing of information and the metabolism of nutrients inside the cell. A novel inference algorithm based on linear ordinary differential equations is proposed. The algorithm can infer the local network of gene–gene interactions surrounding a gene of interest from time-series gene expression profiles. The performance of the algorithm has been tested on in silico simulated gene expression data and on a nine gene subnetwork part of the DNA-damage response pathway (SOS pathway) in the bacteria Escherichia coli. This approach can infer regulatory interactions even when only a small number of measurements is available.

References

    1. 1)
      • T. Akutsu , S. Miyano , S. Kuhara . Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput. , 17 - 28.
    2. 2)
      • T. Akutsu , S. Miyano , S. Kuhara . Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics , 8 , 727 - 734
    3. 3)
      • S. Liang , S. Fuhrman , R. Somogyi . Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp. Biocomput. , 18 - 29.
    4. 4)
      • N. Dojer , A. Gambin , A. Mizera , B. Wilczynski , J. Tiuryn . Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics
    5. 5)
      • J. Yu , V. Anne Smith , P.P. Wang , A.J. Hartemink , E.D. Jarvis . Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics , 18 , 3594 - 3603
    6. 6)
      • K. Basso , A.A. Margolin , G. Stolovitzky , U. Klein , R. Dalla-Favera , A. Califano . Reverse engineering of regulatory networks in human B cells. Nat. Genet. , 4 , 382 - 390
    7. 7)
      • A.J. Butte , I.S. Kohane . Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. , 418 - 429.
    8. 8)
      • J.J. Faith , B. Hayete , J.T. Thaden , I. Mogno , J. Wierzbowski , G. Cottarel , S. Kasif , J.J. Collins , T.S. Gardner . Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. , 1
    9. 9)
      • R. Bonneau , D.J. Reiss , P. Shannon , M. Facciotti , L. Hood , N.S. Baliga , V. Thorsson . The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo (evaluation studies). Genome. Biol. , 5
    10. 10)
      • T.S. Gardner , D. di Bernardo , D. Lorenz , J.J. Collins . Inferring genetic networks and identifying compound mode of action via expression profiling. Science , 102 - 105
    11. 11)
      • E.P. van Someren , L.F. Wessels , M.J. Reinders . Linear modeling of genetic networks from experimental data. Proc. Int. Conf. Intell. Syst. Mol. Biol. , 355 - 366
    12. 12)
      • M.K.S. Yeung , J. Tegnfier , J.J. Collins . Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl Acad. Sci. USA , 6163 - 6168
    13. 13)
      • E.P. van Someren , B.L.T. Vaes , W.T. Steegenga , A.M. Sijbers , K.J. Dechering , M.J.T. Reinders . Least absolute regression network analysis of the murine osteoblast difierentiation network. Bioinformatics , 4 , 477 - 484
    14. 14)
      • M. Bansal , V. Belcastro , A. Ambesi-Impiombato , D. di Bernardo . How to infer gene networks from expression profiles (comparative study). Mol. Syst. Biol.
    15. 15)
      • H.D. Jong . Modeling and simulation of genetic regulatory systems: A literature review. J. Comp. Biol. , 67 - 103
    16. 16)
      • T.J. Hastie , R.J. Tibshirani , J. Friedman . (2001) The elements of statistical learning.
    17. 17)
      • van Someren, E.P., Wessels, L.F.A., Reinders, M.J.T., Backer, E.: `Searching for limited connectivity in genetic network models', Proc. 2nd Int. Conf. Systems Biol, 2001, p. 222–230.
    18. 18)
      • D. Di Bernardo , T.S. Gardner , J.J. Collins . Robust identification of large genetic networks. Proc. Pacific Symp. Biocomp. , 486 - 497.
    19. 19)
      • L. Ljung . (1999) System identification: theory for the user.
    20. 20)
      • M. Bansal , G.D. Gatta , D. di Bernardo . Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics , 7 , 815 - 822
    21. 21)
      • j. Faith , T.S. Gardner . Reverse-engineering transcription control networks. Phys. Life Rev. , 65 - 88
    22. 22)
      • J. Hasty , D. McMillen , J.J. Collins . Engineered gene circuits. Nature , 6912 , 224 - 230
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb_20060079
Loading

Related content

content/journals/10.1049/iet-syb_20060079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address