Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Non-normality can facilitate pulsing in biomolecular circuits

Non-normality can underlie pulse dynamics in many engineering contexts. However, its role in pulses generated in biomolecular contexts is generally unclear. Here, the authors address this issue using the mathematical tools of linear algebra and systems theory on simple computational models of biomolecular circuits. They find that non-normality is present in standard models of feedforward loops. They used a generalised framework and pseudospectrum analysis to identify non-normality in larger biomolecular circuit models, finding that it correlates well with pulsing dynamics. Finally, they illustrate how these methods can be used to provide analytical support to numerical screens for pulsing dynamics as well as provide guidelines for design.

References

    1. 1)
      • 14. Sontag, E.D.: ‘A dynamic model of immune responses to antigen presentation predicts different regions of tumor or pathogen elimination’, Cell Syst., 2017, 4, (2), pp. 231241.
    2. 2)
      • 19. Friedland, S.: ‘A generalization of the Kreiss matrix theorem’, SIAM J. Math. Anal., 1981, 12, (6), pp. 826832.
    3. 3)
      • 13. Shoval, O., Alon, U., Sontag, E.: ‘Symmetry invariance for adapting biological systems’, SIAM J. Appl. Dyn. Syst., 2011, 10, (3), pp. 857886.
    4. 4)
      • 3. Locke, J.C., Young, J.W., Fontes, M., et al: ‘Stochastic pulse regulation in bacterial stress response’, Science, 2011, 334, (6054), pp. 366369.
    5. 5)
      • 8. Mangan, S., Alon, U.: ‘Structure and function of the feed-forward loop network motif’, Proc. Natl. Acad. Sci. USA, 2003, 100, (21), pp. 1198011985.
    6. 6)
      • 20. Wright, T.: ‘EigTool software package’, 2002. Available at http://www.comlab.ox.ac.uk/pseudospectra/eigtool/, accessed 11 August 2016.
    7. 7)
      • 10. Guo, S., Murray, R.M.: ‘Prototyping and implementation of a novel feedforward loop in a cell-free transcription-translation system and cells’, bioRxiv, 2017, doi:10.1101/123190.
    8. 8)
      • 5. Alon, U.: ‘An introduction to systems biology: design principles of biological circuits’ (CRC Press, Boca Raton, FL, USA, 2006).
    9. 9)
      • 12. Shoval, O., Goentoro, L., Hart, Y., et al: ‘Fold-change detection and scalar symmetry of sensory input fields’, Proc. Natl. Acad. Sci. USA, 2010, 107, (36), pp. 1599516000.
    10. 10)
      • 11. Aström, K.J., Murray, R.M.: ‘Feedback systems: an introduction for scientists and engineers’ (Princeton University Press, Princeton, NJ, USA, 2010).
    11. 11)
      • 21. Skataric, M., Sontag, E.D.: ‘A characterization of scale invariant responses in enzymatic networks’, PLoS Comput. Biol., 2012, 8, (11), pp. 112.
    12. 12)
      • 16. Schmid, P.J.: ‘Nonmodal stability theory’, Annu. Rev. Fluid Mech., 2007, 39, pp. 129162.
    13. 13)
      • 23. Ma, W., Trusina, A., El.Samad, H., et al: ‘Defining network topologies that can achieve biochemical adaptation’, Cell, 2009, 138, (4), pp. 760773.
    14. 14)
      • 22. Takeda, K., Shao, D., Adler, M., et al: ‘Incoherent feedforward control governs adaptation of activated Ras in a eukaryotic chemotaxis pathway’, Sci. Signal, 2012, 5, (205), doi:10.1126/scisignal.2002413.
    15. 15)
      • 6. Yi, T.M., Huang, Y., Simon, M.I., et al: ‘Robust perfect adaptation in bacterial chemotaxis through integral feedback control’, Proc. Natl. Acad. Sci. USA, 2000, 97, (9), pp. 46494653.
    16. 16)
      • 9. Goentoro, L., Shoval, O., Kirschner, M.W., et al: ‘The incoherent feedforward loop can provide fold-change detection in gene regulation’, Mol. Cell, 2009, 36, (5), pp. 894899.
    17. 17)
      • 7. Kaplan, S., Bren, A., Dekel, E., et al: ‘The incoherent feed-forward loop can generate non-monotonic input functions for genes’, Mol. Syst. Biol., 2008, 4, (203), doi:10.1038/msb.2008.43.
    18. 18)
      • 17. Klika, V.: ‘Significance of non-normality-induced patterns: Transient growth versus asymptotic stability’, Chaos, 2017, 27, (7), pp. 073120.
    19. 19)
      • 1. Reshotko, E.: ‘Transient growth: a factor in bypass transition’, Phys. Fluids, 2001, 13, (5), pp. 10671075.
    20. 20)
      • 15. Bale, R., Govindarajan, R.: ‘Transient growth and why we should care about it’, Resonance, 2010, 15, (5), pp. 441457.
    21. 21)
      • 4. Morozova, E.O., Zakharov, D., Gutkin, B.S., et al: ‘Dopamine neurons change the type of excitability in response to stimuli’, PLoS Comput. Biol., 2016, 12, (12), p. e1005233.
    22. 22)
      • 18. Golub, G.H., van Loan, C.F.: ‘Matrix computations’ vol. 3 (JHU Press, New Delhi, India, 2012).
    23. 23)
      • 2. Levine, J.H., Lin, Y., Elowitz, M.B.: ‘Functional roles of pulsing in genetic circuits’, Science, 2013, 342, (6163), pp. 11931200.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2018.0008
Loading

Related content

content/journals/10.1049/iet-syb.2018.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address