Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Method for identification of sensitive nodes in Boolean models of biological networks

Biological systems are often represented as Boolean networks and analysed to identify sensitive nodes which on perturbation disproportionately change a predefined output. There exist different kinds of perturbation methods: perturbation of function, perturbation of state and perturbation in update scheme. Nodes may have defects in interpretation of the inputs from other nodes and calculation of the node output. To simulate these defects and systematically assess their effect on the system output, two new function perturbations, referred to as ‘not of function’ and ‘function of not’, are introduced. In the former, the inputs are assumed to be correctly interpreted but the output of the update rule is perturbed; and in the latter, each input is perturbed but the correct update rule is applied. These and previously used perturbation methods were applied to two existing Boolean models, namely the human melanogenesis signalling network and the fly segment polarity network. Through mathematical simulations, it was found that these methods successfully identified nodes earlier found to be sensitive using other methods, and were also able to identify sensitive nodes which were previously unreported.

References

    1. 1)
      • 14. Qian, X., Dougherty, E.R.: ‘Effect of function perturbation on the steady-state distribution of genetic regulatory networks: optimal structural intervention’, IEEE Trans. Signal Process., 2008, 56, pp. 49664976.
    2. 2)
      • 15. Qian, X., Dougherty, E.R.: ‘On the long-run sensitivity of probabilistic Boolean networks’, J. Theor. Biol., 2009, 257, pp. 560577.
    3. 3)
      • 6. Fumiã, H.F., Martins, M.L.: ‘Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes’, PLoS One, 2013, 8, (7), p. e69008.
    4. 4)
      • 3. Thomas, R.: ‘Boolean formalization of genetic control circuits’, J. Theor. Biol., 1973, 42, (3), pp. 563585.
    5. 5)
      • 19. Wang, R.-S., Albert, R.: ‘Elementary signaling modes predict the essentiality of signal transduction network components’, BMC Syst. Biol., 2011, 5, p. 44.
    6. 6)
      • 28. Yao, Y., Ma, C., Deng, H., et al: ‘Dynamics and robustness of the cardiac progenitor cell induced pluripotent stem cell network during cell phenotypes transition’, IET Syst. Biol., Inst. Eng. Technol., 2017, 11, (1), pp. 17.
    7. 7)
      • 17. Kwon, Y.K., Cho, K.H.: ‘Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics’, Bioinformatics, 2008, 24, pp. 987994.
    8. 8)
      • 11. Subramanian, K., Gadgil, C.: ‘Robustness of the Drosophila segment polarity network to transient perturbations’, IET Syst. Biol., 2010, 4, pp. 169176.
    9. 9)
      • 2. Karlebach, G., Shamir, R.: ‘Modelling and analysis of gene regulatory networks’, Nat. Rev. Mol. Cell Biol., 2008, 9, pp. 770780.
    10. 10)
      • 5. Pal, R., Datta, A., Bittner, M.L., et al: ‘Intervention in context-sensitive probabilistic Boolean networks’, Bioinformatics, 2005, 21, (7), pp. 12111218.
    11. 11)
      • 12. Saadatpour, A., Wang, R.-S., Liao, A., et al: ‘Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia’, PLoS Comput. Biol., 2011, 7, p. e1002267.
    12. 12)
      • 9. Lee, H.-S., Goh, M.-J., Kim, J., et al: ‘A systems-biological study on the identification of safe and effective molecular targets for the reduction of ultraviolet B-induced skin pigmentation’, Sci. Rep., 2015, 5, p. 10305.
    13. 13)
      • 30. Berntenis, N., Ebeling, M.: ‘Detection of attractors of large Boolean networks via exhaustive enumeration of appropriate subspaces of the state space’, BMC Bioinformatics, 2013, 14, (361), pp. 110.
    14. 14)
      • 22. Albert, R., Othmer, H.G.: ‘The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster’, J. Theor. Biol., 2003, 223, pp. 118.
    15. 15)
      • 24. Jost, M., Huggett, T.M., Kari, C., et al: ‘Epidermal growth factor receptor-dependent control of keratinocyte survival and Bcl-Xl expression through a mek-dependent pathway’, J. Biol. Chem., 2001, 276, pp. 63206326.
    16. 16)
      • 21. Kauffman, S.A., Peterson, C., Samuelsson, B., et al: ‘Genetic networks with canalyzing Boolean rules are always stable’, Proc. Natl. Acad. Sci. USA, 2004, 101, pp. 1710217107.
    17. 17)
      • 25. Saha, B., Singh, S.K., Sarkar, C., et al: ‘Activation of the MITF promoter by lipid-stimulated activation of P38-stress signalling to CREB’, Pigment Cell Res., 2006, 19, (6), pp. 595605.
    18. 18)
      • 13. Garg, A., Mohanram, K., Di Cara, A., et al: ‘Modeling stochasticity and robustness in gene regulatory networks’, Bioinformatics, 2009, 25, pp. 101109.
    19. 19)
      • 8. Shmulevich, I., Dougherty, E.R., Zhang, W.: ‘Gene perturbation and intervention in probabilistic Boolean networks’, Bioinformatics, 2002, 18, pp. 13191331.
    20. 20)
      • 23. von Dassow, G., Meir, E., Munro, E.M., et al: ‘The segment polarity network is a robust developmental module’, Nature, 2000, 406, (6792), pp. 188192.
    21. 21)
      • 16. Chaves, M., Albert, R., Sontag, E.D.: ‘Robustness and fragility of Boolean models for genetic regulatory networks’, J. Theor. Biol., 2005, 235, pp. 431449.
    22. 22)
      • 27. Methot, N., Basler, K.: ‘An absolute requirement for Cubitus interruptus in hedgehog signaling’, Development, 2001, 128, (5), p. 733.
    23. 23)
      • 10. Fauré, A., Naldi, A., Chaouiya, C., et al: ‘Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle’, Bioinformatics, 2006, 22, pp. 124131.
    24. 24)
      • 1. Glass, L., Kauffman, S.A.: ‘The logical analysis of continuous, non-linear biochemical control networks’, J. Theor. Biol., 1973, 39, pp. 103129.
    25. 25)
      • 26. Gallet, A., Angelats, C., Kerridge, S., et al: ‘Cubitus interruptus-independent transduction of the hedgehog signal in Drosophila’, Development, 2000, 127, (24), p. 5509.
    26. 26)
      • 29. Saadatpour, A., Albert, I., Albert, R.: ‘Attractor analysis of asynchronous Boolean models of signal transduction networks’, J. Theor. Biol., 2010, 266, pp. 641656.
    27. 27)
      • 18. Li, S., Assmann, S.M., Albert, R.: ‘Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling’, PLoS Biol., 2006, 4, pp. 17321748.
    28. 28)
      • 4. Wang, R., Saadatpour, A., Albert, R.: ‘Boolean modeling in systems biology: an overview of methodology and applications’, Phys. Biol., 2012, 9, pp. 055001.
    29. 29)
      • 20. Aldana, M., Cluzel, P.: ‘A natural class of robust networks’, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, (15), pp. 87108714.
    30. 30)
      • 7. Ryll, A., Samaga, R., Schaper, F., et al: ‘Large-scale network models of Il-1 and Il-6 signalling and their hepatocellular specification’, Mol. Biosyst., 2011, 7, (12), pp. 32533270.
    31. 31)
      • 31. Choo, S.-M., Cho, K.-H.: ‘An efficient algorithm for identifying primary phenotype attractors of a large-scale Boolean network’, BMC Syst. Biol., 2016, 10, (1), p. 95.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0039
Loading

Related content

content/journals/10.1049/iet-syb.2017.0039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address