Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Design of dynamic genetic memory

In electronic systems, dynamic random access memory (DRAM) is one of the core modules in the modern silicon computer. As for a bio-computer, one would need a mechanism for storage of bio-information named ‘data’, which, in binary logic, has two levels, logical high and logical low, or in the normalised form, ‘1’ and ‘0’. This study proposes a possible genetic DRAM based on the modified electronic configuration, which uses the biological reaction to fulfil an equivalent RC circuit constituting a memory cell. The authors implement fundamental functions of the genetic DRAM by incorporating a genetic toggle switch for data hold. The results of simulation verify that the basic function can be used on a bio-storage module for the future bio-computer.

References

    1. 1)
      • 22. Paulsson, J.: ‘Summing up the noise in gene networks’, Nature, 2004, 427, pp. 415418.
    2. 2)
      • 7. Breithaupt, H.: ‘The engineer's approach to biology’, EMBO Rep., 2006, 7, (1), pp. 2123.
    3. 3)
      • 8. Elowitz, M.B., Leibler, S.: ‘A synthetic oscillatory network of transcriptional regulators’, Nature, 2000, 403, pp. 335338.
    4. 4)
      • 13. Moe-Behrens, G.H.G.: ‘The biological microprocessor, or how to build a computer with biological parts’, Comput. Struct. Biotechnol. J., 2013, 7, (8), pp. 118.
    5. 5)
      • 15. Church, G.M., Gao, Y., Kosuri, S.: ‘Next-generation digital information storage in DNA’, Science, 2012, 337, (6102), p. 1628.
    6. 6)
      • 17. Dennard, R.H.: ‘Field-effect transistor memory’. United States Patent No. 3,387,286, June 1968.
    7. 7)
      • 20. Haraszti, T.P.: ‘CMOS memory Circuits’ (Kluwer Academic Publishers, Massachusetts, 2000).
    8. 8)
      • 14. Lin, C.L., Kuo, T.Y., Chen, Y.Y.: ‘Implementation of a genetic logic circuit: bio-register’, Syst. Synthetic Biol., 2015, 9, (1), pp. 4348.
    9. 9)
      • 3. Wang, B., Buck, M.: ‘Customizing cell signaling using engineered genetic logic circuits’, Trends Microbiol., 2012, 20, (8), pp. 376384.
    10. 10)
      • 5. Nielsen, A.A., Der, B.S., Shin, J., et al: ‘Genetic circuit design automation’, Science, 2016, 352, (6281), p. aac7341.
    11. 11)
      • 19. Yadav, S.K., Phani, G.P., Sharad, S.: ‘Sense amplifier using reference signal through standard mos and dram capacitor’. United States Patent No. 20,130,083,590, April 2013.
    12. 12)
      • 21. Judd, E.M., Laub, M.T., McAdams, H.H.: ‘Toggles and oscillators: new genetic circuit designs’, BioEssays, 2000, 22, (6), pp. 507509.
    13. 13)
      • 1. Andrianantoandro, E., Basu, S., Karig, D.K., et al: ‘Synthetic biology: new engineering rules for an emerging discipline’, Mol. Syst. Biol, 2006, 2, (2006.0028), pp. 114.
    14. 14)
      • 10. Chuang, C.H., Lin, C.L., Chang, Y.C.: ‘Design of synthetic biological logic circuits based on evolutionary algorithm’, IET Syst. Biol., 2013, 7, (4), pp. 89105.
    15. 15)
      • 6. Brophy, J.A., Voigt, C.A.: ‘Principles of genetic circuit design’, Nature, 2014, 11, (5), pp. 508520.
    16. 16)
      • 18. David, T.W.: ‘Modern dram memory systems: performance analysis and scheduling algorithm’. University of Maryland at College Park College Park/USA, 2005.
    17. 17)
      • 2. Khalil, A.S., Collins, J.J.: ‘Synthetic biology: applications come of age’, Nature, 2010, 11, (5), pp. 367379.
    18. 18)
      • 11. Chuang, C.H., Lin, C.L.: ‘Synthesizing genetic sequential logic circuit with clock pulse generator’, BMC Syst. Biol., 2014, 8, (63), pp. 115.
    19. 19)
      • 4. Lauria, M., Bhalerao, K.D., Pugalanthiran, M.M., et al: ‘Building blocks of a biochemical CPU based on DNA transcription logic’. Workshop on Non-Silicon Computation, Munich, 2004, pp. 1923.
    20. 20)
      • 12. Ausländer, S., Ausländer, D., Müller, M., et al: ‘Programmable single-cell mammalian biocomputers’, Nature, 2012, 487, (7405), pp. 123127.
    21. 21)
      • 16. Bornholt, J., Lopez, R., Carmaen, D.M., et al: ‘A DNA-based archival storage system’. ACM Int. Conf., 6 April 2016.
    22. 22)
      • 9. Gardner, T.S., Cantor, C.R., Collins, J.J.: ‘Construction of a genetic toggle switch in Escherichia coli’, Nature, 2000, 403, pp. 339342.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0021
Loading

Related content

content/journals/10.1049/iet-syb.2017.0021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address