Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Improving GRN re-construction by mining hidden regulatory signals

Inferring gene regulatory networks (GRNs) from gene expression data is an important but challenging issue in systems biology. Here, the authors propose a dictionary learning-based approach that aims to infer GRNs by globally mining regulatory signals, known or latent. Gene expression is often regulated by various regulatory factors, some of which are observed and some of which are latent. The authors assume that all regulators are unknown for a target gene and the expression of the target gene can be mapped into a regulatory space spanned by all the regulators. Specifically, the authors modify the dictionary learning model, k-SVD, according to the sparse property of GRNs for mining the regulatory signals. The recovered regulatory signals are then used as a pool of regulatory factors to calculate a confidence score for a given transcription factor regulating a target gene. The capability of recovering hidden regulatory signals was verified on simulated data. Comparative experiments for GRN inference between the proposed algorithm (OURM) and some state-of-the-art algorithms, e.g. GENIE3 and ARACNE, on real-world data sets show the superior performance of OURM in inferring GRNs: higher area under the receiver operating characteristic curves and area under the precision–recall curves.

References

    1. 1)
      • 51. Ocone, A., Millar, A.J., Sanguinetti, G.: ‘Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics’, Bioinformatics, 2013, 29, (7), pp. 910916.
    2. 2)
      • 9. Mohan, K., London, P., Fazei, M., et al: ‘Node-Based learning of multiple Gaussian graphical models’, J. Mach. Learn. Res., 2014, 15, pp. 445488.
    3. 3)
      • 54. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., et al: ‘Inferring regulatory networks from expression data using tree-based methods’, PLoS ONE, 2010, 5, (9), p. e12776.
    4. 4)
      • 67. Ma, Z., Richard, H., Tucker, D.L., et al: ‘Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW)’, J. Bacteriol., 2002, 184, (24), pp. 70017012.
    5. 5)
      • 33. Reverter, A., Chan, E.K.F.: ‘Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks’, Bioinformatics, 2008, 24, (21), pp. 24912497.
    6. 6)
      • 32. Wang, T., Ren, Z., Ding, Y., et al: ‘FastGGM: an efficient algorithm for the inference of Gaussian graphical model in biological networks’, PLoS Comp. Biol., 2016, 12, (2), p. e1004755.
    7. 7)
      • 29. Siahpirani, A.F., Roy, S.: ‘A prior-based integrative framework for functional transcriptional regulatory network inference’, Nucleic Acids Res., 2017, 45, (4), pp. e21e21.
    8. 8)
      • 35. Nayak, R.R., Kearns, M., Spielman, R.S., et al: ‘Coexpression network based on natural variation in human gene expression reveals gene interactions and functions’, Genome Res., 2009, 19, (11), pp. 19531962.
    9. 9)
      • 57. Mairal, J., Bach, F., Ponce, J., et al: ‘Online learning for matrix factorization and sparse coding’, J. Mach. Learn. Res., 2010, 11, pp. 1960.
    10. 10)
      • 63. Schaffter, T., Marbach, D., Floreano, D.: ‘Genenetweaver: in silico benchmark generation and performance profiling of network inference methods’, Bioinformatics, 2011, 27, (16), pp. 22632270.
    11. 11)
      • 64. Gama-Castro, S., Salgado, H., Peralta-Gil, M., et al: ‘RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor units)’, Nucleic Acids Res., 2010, 39, (suppl_1), pp. D98D105.
    12. 12)
      • 24. Shmulevich, I., Dougherty, E.R., Kim, S., et al: ‘Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks’, Bioinformatics, 2002, 18, (2), pp. 261274.
    13. 13)
      • 7. De Smet, R., Marchal, K.: ‘Advantages and limitations of current network inference methods’, Nat. Rev. Microbiol., 2010, 8, (10), pp. 717729.
    14. 14)
      • 15. Lachmann, A., Giorgi, F.M., Lopez, G., et al: ‘ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information’, Bioinformatics, 2016, 32, (14), pp. 22332235.
    15. 15)
      • 37. Liu, X., Wang, Y., Ji, H., et al: ‘Personalized characterization of diseases using sample-specific networks’, Nucleic Acids Res., 2016, 44, (22), p. e164.
    16. 16)
      • 52. Geeven, G., van Kesteren, R.E., Smit, A.B., et al: ‘Identification of context-specific gene regulatory networks with GEMULA-gene expression modeling using LAsso’, Bioinformatics, 2012, 28, (2), pp. 214221.
    17. 17)
      • 58. Elad, M., Aharon, M.: ‘Image denoising via sparse and redundant representations over learned dictionaries’, IEEE Trans. Image Process., 2006, 15, (12), pp. 37363745.
    18. 18)
      • 39. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (John Wiley & Sons Press, New York, 2012).
    19. 19)
      • 23. Chaouiya, C.: ‘Petri net modelling of biological networks’, Brief. Bioinformatics, 2007, 8, (4), pp. 210219.
    20. 20)
      • 21. Whittaker, J.: ‘Graphical models in applied multivariate statistics’ (Wiley Publishing Press, New York, 2009).
    21. 21)
      • 36. Mao, L., Van Hemert, J.L., Dash, S., et al: ‘Arabidopsis gene co-expression network and its functional modules’, BMC Bioinformatics, 2009, 10, p. 346.
    22. 22)
      • 66. Meyer, P.E., Lafitte, F., Bontempi, G.: ‘Minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information’, BMC Bioinformatics, 2008, 9, p. 461.
    23. 23)
      • 40. Zhang, X., Zhao, X.-M., He, K., et al: ‘Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information’, Bioinformatics, 2012, 28, (1), pp. 98104.
    24. 24)
      • 12. Zhang, X., Zhao, J., Hao, J.K., et al: ‘Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks’, Nucleic Acids Res., 2015, 43, (5), p. e31.
    25. 25)
      • 38. Reshef, D.N., Reshef, Y.A., Finucane, H.K., et al: ‘Detecting novel associations in large data sets’, Science, 2011, 334, (6062), pp. 15181524.
    26. 26)
      • 28. Roy, S., Lagree, S., Hou, Z., et al: ‘Integrated module and gene-specific regulatory inference implicates upstream signaling networks’, PLoS Comp. Biol., 2013, 9, (10), p. e1003252.
    27. 27)
      • 49. Liu, F., Zhang, S.-W., Guo, W.-F., et al: ‘Inference of gene regulatory network based on local Bayesian networks’, PLoS Comp. Biol., 2016, 12, (8), p. e1005024.
    28. 28)
      • 26. Ma, S., Gong, Q., Bohnert, H.J.: ‘An Arabidopsis gene network based on the graphical Gaussian model’, Genome Res., 2007, 17, (11), pp. 16141625.
    29. 29)
      • 30. Wille, A., Zimmermann, P., Vranova, E., et al: ‘Sparse graphical Gaussian modeling of the isoprenoid gene network in arabidopsis thaliana’, Genome Biol., 2004, 5, (11), p. R92.
    30. 30)
      • 65. Zhu, C., Byers, K.J., McCord, R.P., et al: ‘High-resolution DNA-binding specificity analysis of yeast transcription factors’, Genome Res., 2009, 19, (4), pp. 556566.
    31. 31)
      • 46. Liu, W., Zhu, W., Liao, B., et al: ‘Improving gene regulatory network structure using redundancy reduction in the MRNET algorithm’, RSC Adv., 2017, 7, (37), pp. 2322223233.
    32. 32)
      • 10. Aliferis, C.F., Statnikov, A., Tsamardinos, I., et al: ‘Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: algorithms and empirical evaluation’, J. Mach. Learn. Res., 2010, 11, pp. 171234.
    33. 33)
      • 41. Sumazin, P., Yang, X., Chiu, H.-S., et al: ‘An extensive MicroRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma’, Cell, 2011, 147, (2), pp. 370381.
    34. 34)
      • 2. Basso, K., Margolin, A.A., Stolovitzky, G., et al: ‘Reverse engineering of regulatory networks in human B cells’, Nat. Genet., 2005, 37, (4), pp. 382390.
    35. 35)
      • 18. Wang, J., Chen, B., Wang, Y., et al: ‘Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information’, Nucleic Acids Res., 2013, 41, (8), p. e97.
    36. 36)
      • 50. Glass, K., Huttenhower, C., Quackenbush, J., et al: ‘Passing messages between biological networks to refine predicted interactions’, PLoS ONE, 2013, 8, (5), p. e64832.
    37. 37)
      • 56. Needell, D., Tropp, J.A.: ‘CoSaMP: iterative signal recovery from incomplete and inaccurate samples’, Appl. Comput. Harmon. Anal., 2009, 26, (3), pp. 301321.
    38. 38)
      • 20. Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: ‘On learning gene regulatory networks under the Boolean network model’, Mach. Learn., 2003, 52, (1), pp. 147167.
    39. 39)
      • 19. Zhao, J., Zhou, Y., Zhang, X., et al: ‘Part mutual information for quantifying direct associations in networks’, Proc. Natl Acad. Sci. USA, 2016, 113, (18), pp. 51305135.
    40. 40)
      • 47. Aluru, M., Zola, J., Nettleton, D., et al: ‘Reverse engineering and analysis of large genome-scale gene networks’, Nucleic Acids Res., 2013, 41, (1), p. e24.
    41. 41)
      • 16. Kuffner, R., Petri, T., Tavakkolkhah, P., et al: ‘Inferring gene regulatory networks by ANOVA’, Bioinformatics, 2012, 28, (10), pp. 13761382.
    42. 42)
      • 59. Tosic, I., Frossard, P.: ‘Dictionary learning’, IEEE Signal Process. Mag., 2011, 28, (2), pp. 2738.
    43. 43)
      • 61. Jiang, Z., Lin, Z., Davis, L.S.: ‘Label consistent K-SVD: learning a discriminative dictionary for recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (11), pp. 26512664.
    44. 44)
      • 44. Runge, J., Heitzig, J., Petoukhov, V., et al: ‘Escaping the curse of dimensionality in estimating multivariate transfer entropy’, Phys. Rev. Lett., 2012, 108, (25), p. 258701.
    45. 45)
      • 11. Statnikov, A., Aliferis, C.F.: ‘Analysis and computational dissection of molecular signature multiplicity’, PLoS Comp. Biol., 2010, 6, (5), p. e1000790.
    46. 46)
      • 22. Friedman, N., Linial, M., Nachman, I., et al: ‘Using Bayesian networks to analyze expression data’, J. Comput. Biol., 2000, 7, (3-4), pp. 601620.
    47. 47)
      • 27. Tian, D., Gu, Q., Ma, J.: ‘Identifying gene regulatory network rewiring using latent differential graphical models’, Nucleic Acids Res., 2016, 44, (17), p. e140.
    48. 48)
      • 55. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666.
    49. 49)
      • 34. Wang, H.Q., Tsai, C.J.: ‘Corsig: a general framework for estimating statistical significance of correlation and its application to gene co-expression analysis’, PLoS ONE, 2013, 8, (10), p. e77429.
    50. 50)
      • 14. Faith, J.J., Hayete, B., Thaden, J.T., et al: ‘Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles’, PLoS Biol., 2007, 5, (1), pp. 5466.
    51. 51)
      • 68. Persson, B.L., Lagerstedt, J.O., Pratt, J.R., et al: ‘Regulation of phosphate acquisition in Saccharomyces cerevisiae’, Curr. Genet., 2003, 43, (4), pp. 225244.
    52. 52)
      • 25. Vasic, B., Ravanmehr, V., Krishnan, A.R.: ‘An information theoretic approach to constructing robust Boolean gene regulatory networks’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2012, 9, (1), pp. 5265.
    53. 53)
      • 6. Marbach, D., Prill, R.J., Schaffter, T., et al: ‘Revealing strengths and weaknesses of methods for gene network inference’, Proc. Natl Acad. Sci. USA, 2010, 107, (14), pp. 62866291.
    54. 54)
      • 17. Yu, D., Lim, J., Wang, X., et al: ‘Enhanced construction of gene regulatory networks using hub gene information’, BMC Bioinformatics, 2017, 18, p. 186.
    55. 55)
      • 1. Gerstein, M.B., Kundaje, A., Hariharan, M., et al: ‘Architecture of the human regulatory network derived from ENCODE data’, Nature, 2012, 489, (7414), pp. 91100.
    56. 56)
      • 5. Hecker, M., Lambeck, S., Toepfer, S., et al: ‘Gene regulatory network inference: data integration in dynamic models – a review’, BioSystem, 2009, 96, (1), pp. 86103.
    57. 57)
      • 48. Zheng, G., Xu, Y., Zhang, X., et al: ‘CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data’, BMC Bioinformatics, 2016, 17, (17), p. 535.
    58. 58)
      • 13. Zhang, X., Liu, K., Liu, Z.-P., et al: ‘NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference’, Bioinformatics, 2013, 29, (1), pp. 106113.
    59. 59)
      • 31. Schafer, J., Strimmer, K.: ‘An empirical Bayes approach to inferring large-scale gene association networks’, Bioinformatics, 2005, 21, (6), pp. 754764.
    60. 60)
      • 45. Meyer, P.E., Kontos, K., Lafitte, F., et al: ‘Information-theoretic inference of large transcriptional regulatory networks’, EURASIP J. Bioinform. Syst. Biol., 2007, (1), p. 79879.
    61. 61)
      • 42. Margolin, A.A., Nemenman, I., Basso, K., et al: ‘ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context’, BMC Bioinformatics, 2006, 7, p. S7.
    62. 62)
      • 8. Friedman, J., Hastie, T., Tibshirani, R.: ‘Sparse inverse covariance estimation with the graphical lasso’, Biostatistics, 2008, 9, (3), pp. 432441.
    63. 63)
      • 43. Janzing, D., Balduzzi, D., Grosse-Wentrup, M., et al: ‘Quantifying causal influences’, Ann. Stat., 2013, 41, (5), pp. 23242358.
    64. 64)
      • 4. De Jong, H.: ‘Modeling and simulation of genetic regulatory systems: a literature review’, J. Comput. Biol., 2002, 9, (1), pp. 67103.
    65. 65)
      • 53. Haury, A.C., Mordelet, F., Vera-Licona, P., et al: ‘TIGRESS: Trustful inference of gene REgulation using stability selection’, BMC. Syst. Biol., 2012, 6, (1), p. 145.
    66. 66)
      • 3. Marbach, D., Costello, J.C., Kuffner, R., et al: ‘Wisdom of crowds for robust gene network inference’, Nat. Methods, 2012, 9, (8), pp. 796804.
    67. 67)
      • 62. Rubinstein, R., Bruckstein, A.M., Elad, M.: ‘Dictionaries for sparse representation modeling’, Proc. IEEE, 2010, 98, (6), pp. 10451057.
    68. 68)
      • 60. Zhang, Q., Li, B.: ‘Discriminative K-SVD for dictionary learning in face recognition’. 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0013
Loading

Related content

content/journals/10.1049/iet-syb.2017.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address