http://iet.metastore.ingenta.com
1887

Bond graph modelling of chemoelectrical energy transduction

Bond graph modelling of chemoelectrical energy transduction

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Energy-based bond graph modelling of biomolecular systems is extended to include chemoelectrical transduction thus enabling integrated thermodynamically compliant modelling of chemoelectrical systems in general and excitable membranes in particular. Our general approach is illustrated by recreating a well-known model of an excitable membrane. This model is used to investigate the energy consumed during a membrane action potential thus contributing to the current debate on the trade-off between the speed of an action potential event and energy consumption. The influx of is often taken as a proxy for energy consumption; in contrast, this study presents an energy-based model of action potentials. As the energy-based approach avoids the assumptions underlying the proxy approach it can be directly used to compute energy consumption in both healthy and diseased neurons. These results are illustrated by comparing the energy consumption of healthy and degenerative retinal ganglion cells using both simulated and in vitro data.

References

    1. 1)
      • P. Atkins , J. de Paula . (2011)
        1. Atkins, P., de Paula, J.: ‘Physical chemistry for the life sciences’ (Oxford University Press, 2011, 2nd edn.).
        .
    2. 2)
      • H.M. Paynter . (1961)
        2. Paynter, H.M.: ‘Analysis and design of engineering systems’ (MIT Press, Cambridge, MA, 1961).
        .
    3. 3)
      • G. Oster , A. Perelson , A. Katchalsky .
        3. Oster, G., Perelson, A., Katchalsky, A.: ‘Network thermodynamics’, Nature, 1971, 234, pp. 393399. doi: 10.1038/234393a0.
        . Nature , 393 - 399
    4. 4)
      • G.F. Oster , A.S. Perelson , A. Katchalsky .
        4. Oster, G.F., Perelson, A.S., Katchalsky, A.: ‘Network thermodynamics: dynamic modelling of biophysical systems’, Q. Rev. Biophys., 1973, 6, (01), pp. 1134. doi: 10.1017/S0033583500000081.
        . Q. Rev. Biophys. , 1 , 1 - 134
    5. 5)
      • P.J. Gawthrop , E.J. Crampin .
        5. Gawthrop, P.J., Crampin, E.J.: ‘Energy-based analysis of biochemical cycles using bond graphs’, Proc. R. Soc. A Math. Phys. Eng. Sci., 2014, 470, (2171), pp. 125. doi: 10.1098/rspa.2014.0459..
        . Proc. R. Soc. A Math. Phys. Eng. Sci. , 2171 , 1 - 25
    6. 6)
      • P.J. Gawthrop , J. Cursons , E.J. Crampin .
        6. Gawthrop, P.J., Cursons, J., Crampin, E.J.: ‘Hierarchical bond graph modelling of biochemical networks’, Proc. R. Soc. A Math. Phys. Eng. Sci., 2015, 471, (2184), pp. 123. doi: 10.1098/rspa.2015.0642..
        . Proc. R. Soc. A Math. Phys. Eng. Sci. , 2184 , 1 - 23
    7. 7)
      • P.J. Gawthrop , E.J. Crampin .
        7. Gawthrop, P.J., Crampin, E.J.: ‘Modular bond-graph modelling and analysis of biomolecular systems’, IET Syst. Biol., 2016, 10, (5), pp. 187201. doi: 10.1049/iet-syb.2015.0083..
        . IET Syst. Biol. , 5 , 187 - 201
    8. 8)
      • P.J. Gawthrop . (2017)
        8. Gawthrop, P.J.: ‘Bond-graph modelling and causal analysis of biomolecular systems’, in Borutzky, W. (Ed.): ‘Bond graphs for modelling, control and fault diagnosis of engineering systems’ (Springer International Publishing, Berlin, 2017), pp. 587623. ISBN 978-3-319-47434-2. doi: 10.1007/978-3-319-47434-2_16.
        .
    9. 9)
      • P.J. Gawthrop , L.P.S. Smith . (1996)
        9. Gawthrop, P.J., Smith, L.P.S.: ‘Metamodelling: bond graphs and dynamic systems’ (Prentice Hall, Hemel Hempstead, 1996). ISBN 0-13-489824-9.
        .
    10. 10)
      • A. Mukherjee , R. Karmaker , A.K. Samantaray . (2006)
        10. Mukherjee, A., Karmaker, R., Samantaray, A.K.: ‘Bond graph in modeling, simulation and fault indentification’ (I.K. International, New Delhi, 2006).
        .
    11. 11)
      • W. Borutzky . (2011)
        11. Borutzky, W.: ‘Bond graph modelling of engineering systems: theory, applications and software support’ (Springer, 2011). ISBN 9781441993670.
        .
    12. 12)
      • D.C. Karnopp , D.L. Margolis , R.C. Rosenberg . (2012)
        12. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: ‘System dynamics: modeling, simulation, and control of mechatronic systems’ (John Wiley & Sons, 2012, 5th edn.). ISBN 978-0470889084.
        .
    13. 13)
      • P.J. Gawthrop , G.P. Bevan .
        13. Gawthrop, P.J., Bevan, G.P.: ‘Bond-graph modeling: a tutorial introduction for control engineers’, IEEE Control Syst. Mag., 2007, 27, (2), pp. 2445. doi: 10.1109/MCS.2007.338279.
        . IEEE Control Syst. Mag. , 2 , 24 - 45
    14. 14)
      • F.E. Cellier . (1991)
        14. Cellier, F.E.: ‘Continuous system modelling’ (Springer-Verlag, 1991).
        .
    15. 15)
      • J. Greifeneder , F.E. Cellier .
        15. Greifeneder, J., Cellier, F.E.: ‘Modeling chemical reactions using bond graphs’. Proc. ICBGM12, 10th SCS Intl. Conf. on Bond Graph Modeling and Simulation, Genoa, Italy, 2012, pp. 110121.
        . Proc. ICBGM12, 10th SCS Intl. Conf. on Bond Graph Modeling and Simulation , 110 - 121
    16. 16)
      • D. Karnopp .
        16. Karnopp, D.: ‘Bond graph models for electrochemical energy storage: electrical, chemical and thermal effects’, J. Franklin Inst., 1990, 327, (6), pp. 983992. ISSN 0016-0032. doi: 10.1016/0016-0032(90)90073-R.
        . J. Franklin Inst. , 6 , 983 - 992
    17. 17)
      • A.L. Hodgkin , A.F. Huxley .
        17. Hodgkin, A.L., Huxley, A.F.: ‘A quantitative description of membrane current and its application to conduction and excitation in nerve’, J. Physiol., 1952, 117, (4), pp. 500544.
        . J. Physiol. , 4 , 500 - 544
    18. 18)
      • B. Hille . (2001)
        18. Hille, B.: ‘Ion channels of excitable membranes’ (Sinauer Associates, Sunderland, MA, 2001, 3rd edn.). ISBN 978-0-87893-321-1.
        .
    19. 19)
      • M. Cloutier , F.B. Bolger , J.P. Lowry .
        19. Cloutier, M., Bolger, F.B., Lowry, J.P., et al: ‘An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements’, J. Comput. Neurosci., 2009, 27, (3), pp. 391414. ISSN 0929-5313. doi: 10.1007/s10827-009-0152-8.
        . J. Comput. Neurosci. , 3 , 391 - 414
    20. 20)
      • B.C. Carter , B.P. Bean .
        20. Carter, B.C., Bean, B.P.: ‘Sodium entry during action potentials of mammalian neurons: Incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons’, Neuron, 2009, 64, (6), pp. 898909. ISSN 0896-6273. doi: 10.1016/j.neuron.2009.12.011.
        . Neuron , 6 , 898 - 909
    21. 21)
      • A. Hasenstaub , S. Otte , E. Callaway .
        21. Hasenstaub, A., Otte, S., Callaway, E., et al: ‘Metabolic cost as a unifying principle governing neuronal biophysics’, Proc. Natl Acad. Sci., 2010, 107, (27), pp. 1232912334. doi: 10.1073/pnas.0914886107.
        . Proc. Natl Acad. Sci. , 27 , 12329 - 12334
    22. 22)
      • B. Sengupta , M. Stemmler , S.B. Laughlin .
        22. Sengupta, B., Stemmler, M., Laughlin, S.B., et al: ‘Action potential energy efficiency varies among neuron types in vertebrates and invertebrates’, PLoS Comput. Biol., 2010, 6, (7), p. e1000840. doi: 10.1371/journal.pcbi.1000840.
        . PLoS Comput. Biol. , e1000840
    23. 23)
      • B. Sengupta , M.B. Stemmler , K.J. Friston .
        23. Sengupta, B., Stemmler, M.B., Friston, K.J.: ‘Information and efficiency in the nervous systems synthesis’, PLoS Comput. Biol., 2013, 9, (7), p. e1003157. doi: 10.1371/journal.pcbi.1003157.
        . PLoS Comput. Biol. , e1003157
    24. 24)
      • B. Sengupta , M.B. Stemmler .
        24. Sengupta, B., Stemmler, M.B.: ‘Power consumption during neuronal computation’, Proc. IEEE, 2014, 102, (5), pp. 738750. ISSN 0018-9219. doi: 10.1109/JPROC.2014.2307755.
        . Proc. IEEE , 5 , 738 - 750
    25. 25)
      • J.E. Niven .
        25. Niven, J.E.: ‘Neuronal energy consumption: biophysics, efficiency and evolution’, Curr. Opin. Neurobiol., 2016, 41, pp. 129135. ISSN 0959-4388. doi: 10.1016/j.conb.2016.09.004.
        . Curr. Opin. Neurobiol. , 129 - 135
    26. 26)
      • J.E. Niven , S.B. Laughlin .
        26. Niven, J.E., Laughlin, S.B.: ‘Energy limitation as a selective pressure on the evolution of sensory systems’, J. Exp. Biol., 2008, 211, (11), pp. 17921804. ISSN 0022-0949. doi: 10.1242/jeb.017574.
        . J. Exp. Biol. , 11 , 1792 - 1804
    27. 27)
      • Flint Beal M. .
        27. Beal M., Flint: ‘Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?’, Ann. Neurol., 1992, 31, (2), pp. 119130. ISSN 1531-8249. doi: 10.1002/ana.410310202.
        . Ann. Neurol. , 2 , 119 - 130
    28. 28)
      • P. Wellstead . (2012)
        28. Wellstead, P.: ‘A new look at disease: Parkinson's through the eyes of an engineer’ (Control Systems Principles, Stockport, UK, 2012). ISBN 978-0-9573864-0-2.
        .
    29. 29)
      • (2012)
        29. Wellstead, P., Cloutier, M. (Ed.): ‘Systems biology of Parkinson's disease’ (Springer New York, 2012). ISBN 978-1-4614-3411-5. doi: 10.1007/978-1-4614-3411-5.
        .
    30. 30)
      • M. Cloutier , R. Middleton , P. Wellstead .
        30. Cloutier, M., Middleton, R., Wellstead, P.: ‘Feedback motif for the pathogenesis of Parkinson's disease’, IET Syst. Biol., 2012, 6, (3), pp. 8693. ISSN 1751-8849. doi: 10.1049/iet-syb.2011.0076.
        . IET Syst. Biol. , 3 , 86 - 93
    31. 31)
      • (2016)
        31. Reeve, A.K., Simcox, E.M., Duchen, M.R., Turnbull, D.M. (Eds.): ‘Mitochondrial dysfunction in neurodegenerative disorders’ (Springer, Switzerland, 2016, 2nd edn.). ISBN 978-3-319-28637-2.
        .
    32. 32)
      • D.G. Hurley , D.M. Budden , E.J. Crampin .
        32. Hurley, D.G., Budden, D.M., Crampin, E.J.: ‘Virtual reference environments: a simple way to make research reproducible’, Brief Bioinform., 2014, 16, (5), pp. 901903. doi: 10.1093/bib/bbu043.
        . Brief Bioinform. , 5 , 901 - 903
    33. 33)
      • Van Rysselberghe P. .
        33. Rysselberghe P., Van: ‘Reaction rates and affinities’, J. Chem. Phys., 1958, 29, (3), pp. 640642. doi: 10.1063/1.1744552.
        . J. Chem. Phys. , 3 , 640 - 642
    34. 34)
      • J.P. Keener , J. Sneyd . (2009)
        34. Keener, J.P., Sneyd, J.: ‘Mathematical physiology: I: cellular physiology’ (Springer, 2009, 2nd edn.), vol. 1.
        .
    35. 35)
      • C. Koch . (2004)
        35. Koch, C.: ‘Biophysics of computation: information processing in single neurons’ (Oxford University Press, Oxford, 2004).
        .
    36. 36)
      • D. Sterratt , B. Graham , A. Gillies . (2011)
        36. Sterratt, D., Graham, B., Gillies, A., et al: ‘Principles of computational modelling in neuroscience’ (Cambridge University Press, 2011). ISBN 9780521877954.
        .
    37. 37)
      • N.P. Smith , E.J. Crampin .
        37. Smith, N.P., Crampin, E.J.: ‘Development of models of active ion transport for whole-cell modelling: cardiac sodium-potassium pump as a case study’, Prog. Biophys. Mol. Biol., 2004, 85, (2–3), pp. 387405. doi: 10.1016/j.pbiomolbio.2004.01.010.
        . Prog. Biophys. Mol. Biol. , 387 - 405
    38. 38)
      • K. Tran , N.P. Smith , D.S. Loiselle .
        38. Tran, K., Smith, N.P., Loiselle, D.S., et al: ‘A thermodynamic model of the cardiac sarcoplasmic/endoplasmic Ca2+ (SERCA) pump’, Biophys. J., 2009, 96, (5), pp. 20292042. ISSN 0006-3495. doi: 10.1016/j.bpj.2008.11.045.
        . Biophys. J. , 5 , 2029 - 2042
    39. 39)
      • J.R. Terkildsen , S. Niederer , E.J. Crampin .
        39. Terkildsen, J.R., Niederer, S., Crampin, E.J., et al: ‘Using physiome standards to couple cellular functions for rat cardiac excitation-contraction’, Exp. Physiol., 2008, 93, (7), pp. 919929, ISSN1469-445X, doi: 10.1113/expphysiol.2007.041871.
        . Exp. Physiol. , 7 , 919 - 929
    40. 40)
      • K. Tran , D.S. Loiselle , E.J. Crampin .
        40. Tran, K., Loiselle, D.S., Crampin, E.J.: ‘Regulation of cardiac cellular bioenergetics: mechanisms and consequences’, Physiol. Rep., 2015, 3, (7), p. e12464, ISSN 2051-817X, doi: 10.14814/phy2.12464.
        . Physiol. Rep. , e12464
    41. 41)
      • S. Neubauer .
        41. Neubauer, S.: ‘The failing heart – an engine out of fuel’, New Engl. J. Med., 2007, 356, (11), pp. 11401151, doi: 10.1056/NEJMra063052.
        . New Engl. J. Med. , 11 , 1140 - 1151
    42. 42)
      • A.M. Katz . (2011)
        42. Katz, A.M.: ‘Physiology of the heart’ (Lippincott Williams and Wilkins, Philadelphia, 2011, 5th edn.), ISBN 978-1-60831-171-2.
        .
    43. 43)
      • Y. Wei , G. Ullah , S.J. Schiff .
        43. Wei, Y., Ullah, G., Schiff, S.J.: ‘Unification of neuronal spikes, seizures, and spreading depression’, J. Neurosci., 2014, 34, (35), pp. 1173311743. doi: 10.1523/JNEUROSCI.0516-14.2014.
        . J. Neurosci. , 35 , 11733 - 11743
    44. 44)
      • G. Ullah , Y. Wei , M.A. Dahlem .
        44. Ullah, G., Wei, Y., Dahlem, M.A., et al: ‘The role of cell volume in the dynamics of seizure, spreading depression, and anoxic depolarization’, PLoS Comput. Biol., 2015, 11, (8), p. e1004414. doi: 10.1371/journal.pcbi.1004414.
        . PLoS Comput. Biol. , e1004414
    45. 45)
      • J. Shen , X. Yang , A. Dong .
        45. Shen, J., Yang, X., Dong, A., et al: ‘Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa’, J. Cell. Physiol., 2005, 203, (3), pp. 457464. ISSN 1097-4652. doi: 10.1002/jcp.20346.
        . J. Cell. Physiol. , 3 , 457 - 464
    46. 46)
      • B. Kulawiak , A.P. Kudin , A. Szewczyk .
        46. Kulawiak, B., Kudin, A.P., Szewczyk, A., et al: ‘BK channel openers inhibit ROS production of isolated rat brain mitochondria’, Exp. Neurol., 2008, 212, (2), pp. 543547, ISSN 0014-4886. doi: http://dx.doi.org/10.1016/j.expneurol.2008.05.004.
        . Exp. Neurol. , 2 , 543 - 547
    47. 47)
      • P. Mitchell .
        47. Mitchell, P.: ‘Possible molecular mechanisms of the protonmotive function of cytochrome systems’, J. Theor. Biol., 1976, 62, (2), pp. 327367. doi: 10.1016/0022-5193(76)90124-7.
        . J. Theor. Biol. , 2 , 327 - 367
    48. 48)
      • P. Mitchell .
        48. Mitchell, P.: ‘Chemiosmotic coupling in oxidative and photosynthetic phosphorylation’, Biochim. Biophys. Acta – Bioenerg., 2011, 1807, (12), pp. 15071538. ISSN 0005-2728. doi: 10.1016/j.bbabio.2011.09.018. Special Section: Peter Mitchell – 50th anniversary of the chemiosmotic theory.
        . Biochim. Biophys. Acta – Bioenerg. , 12 , 1507 - 1538
    49. 49)
      • P. Gawthrop .
        49. Gawthrop, P.: ‘Bond graph modelling of chemiosmotic biomolecular energy transduction’, IEEE Trans. Nanobiosc., 2017, 16, (3), pp. 177188. doi: 10.1109/TNB.2017.2674683. In press.
        . IEEE Trans. Nanobiosc. , 3 , 177 - 188
    50. 50)
      • P. Wellstead , M. Cloutier .
        50. Wellstead, P., Cloutier, M.: ‘An energy systems approach to Parkinson's disease’, Wiley Interdiscip. Rev. Syst. Biol. Med., 2011, 3, (1), pp. 16. ISSN 1939-005X. doi: 10.1002/wsbm.107.
        . Wiley Interdiscip. Rev. Syst. Biol. Med. , 1 , 1 - 6
    51. 51)
      • T. Kameneva , H. Meffin , A.N. Burkitt .
        51. Kameneva, T., Meffin, H., Burkitt, A.N.: ‘Modelling intrinsic electrophysiological properties of on and off retinal ganglion cells’, J. Comput. Neurosci., 2011, 31, (3), pp. 547561. ISSN 0929-5313. doi: 10.1007/s10827-011-0322-3.
        . J. Comput. Neurosci. , 3 , 547 - 561
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0006
Loading

Related content

content/journals/10.1049/iet-syb.2017.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address