access icon free Bond graph modelling of chemoelectrical energy transduction

Energy-based bond graph modelling of biomolecular systems is extended to include chemoelectrical transduction thus enabling integrated thermodynamically compliant modelling of chemoelectrical systems in general and excitable membranes in particular. Our general approach is illustrated by recreating a well-known model of an excitable membrane. This model is used to investigate the energy consumed during a membrane action potential thus contributing to the current debate on the trade-off between the speed of an action potential event and energy consumption. The influx of is often taken as a proxy for energy consumption; in contrast, this study presents an energy-based model of action potentials. As the energy-based approach avoids the assumptions underlying the proxy approach it can be directly used to compute energy consumption in both healthy and diseased neurons. These results are illustrated by comparing the energy consumption of healthy and degenerative retinal ganglion cells using both simulated and in vitro data.

Inspec keywords: molecular biophysics; biomembrane transport; biochemistry; bioelectric potentials; neurophysiology; eye; sodium

Other keywords: chemoelectrical energy transduction; degenerative retinal ganglion cells; biomolecular systems; energy-based bond graph modelling; excitable membranes; chemoelectrical systems; energy consumption; healthy retinal ganglion cells; integrated thermodynamically compliant modelling; healthy neurons; membrane action potential; Na; diseased neurons

Subjects: Natural and artificial biomembranes; Physical chemistry of biomolecular solutions and condensed states; Electrical activity in neurophysiological processes; Bioenergetics; Biological transport; cellular and subcellular transmembrane physics

References

    1. 1)
      • 31. Reeve, A.K., Simcox, E.M., Duchen, M.R., Turnbull, D.M. (Eds.): ‘Mitochondrial dysfunction in neurodegenerative disorders’ (Springer, Switzerland, 2016, 2nd edn.). ISBN 978-3-319-28637-2.
    2. 2)
      • 21. Hasenstaub, A., Otte, S., Callaway, E., et al: ‘Metabolic cost as a unifying principle governing neuronal biophysics’, Proc. Natl Acad. Sci., 2010, 107, (27), pp. 1232912334. doi: 10.1073/pnas.0914886107.
    3. 3)
      • 40. Tran, K., Loiselle, D.S., Crampin, E.J.: ‘Regulation of cardiac cellular bioenergetics: mechanisms and consequences’, Physiol. Rep., 2015, 3, (7), p. e12464, ISSN 2051-817X, doi: 10.14814/phy2.12464.
    4. 4)
      • 20. Carter, B.C., Bean, B.P.: ‘Sodium entry during action potentials of mammalian neurons: Incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons’, Neuron, 2009, 64, (6), pp. 898909. ISSN 0896-6273. doi: 10.1016/j.neuron.2009.12.011.
    5. 5)
      • 39. Terkildsen, J.R., Niederer, S., Crampin, E.J., et al: ‘Using physiome standards to couple cellular functions for rat cardiac excitation-contraction’, Exp. Physiol., 2008, 93, (7), pp. 919929, ISSN1469-445X, doi: 10.1113/expphysiol.2007.041871.
    6. 6)
      • 13. Gawthrop, P.J., Bevan, G.P.: ‘Bond-graph modeling: a tutorial introduction for control engineers’, IEEE Control Syst. Mag., 2007, 27, (2), pp. 2445. doi: 10.1109/MCS.2007.338279.
    7. 7)
      • 35. Koch, C.: ‘Biophysics of computation: information processing in single neurons’ (Oxford University Press, Oxford, 2004).
    8. 8)
      • 6. Gawthrop, P.J., Cursons, J., Crampin, E.J.: ‘Hierarchical bond graph modelling of biochemical networks’, Proc. R. Soc. A Math. Phys. Eng. Sci., 2015, 471, (2184), pp. 123. doi: 10.1098/rspa.2015.0642..
    9. 9)
      • 49. Gawthrop, P.: ‘Bond graph modelling of chemiosmotic biomolecular energy transduction’, IEEE Trans. Nanobiosc., 2017, 16, (3), pp. 177188. doi: 10.1109/TNB.2017.2674683. In press.
    10. 10)
      • 11. Borutzky, W.: ‘Bond graph modelling of engineering systems: theory, applications and software support’ (Springer, 2011). ISBN 9781441993670.
    11. 11)
      • 25. Niven, J.E.: ‘Neuronal energy consumption: biophysics, efficiency and evolution’, Curr. Opin. Neurobiol., 2016, 41, pp. 129135. ISSN 0959-4388. doi: 10.1016/j.conb.2016.09.004.
    12. 12)
      • 28. Wellstead, P.: ‘A new look at disease: Parkinson's through the eyes of an engineer’ (Control Systems Principles, Stockport, UK, 2012). ISBN 978-0-9573864-0-2.
    13. 13)
      • 1. Atkins, P., de Paula, J.: ‘Physical chemistry for the life sciences’ (Oxford University Press, 2011, 2nd edn.).
    14. 14)
      • 8. Gawthrop, P.J.: ‘Bond-graph modelling and causal analysis of biomolecular systems’, in Borutzky, W. (Ed.): ‘Bond graphs for modelling, control and fault diagnosis of engineering systems’ (Springer International Publishing, Berlin, 2017), pp. 587623. ISBN 978-3-319-47434-2. doi: 10.1007/978-3-319-47434-2_16.
    15. 15)
      • 9. Gawthrop, P.J., Smith, L.P.S.: ‘Metamodelling: bond graphs and dynamic systems’ (Prentice Hall, Hemel Hempstead, 1996). ISBN 0-13-489824-9.
    16. 16)
      • 48. Mitchell, P.: ‘Chemiosmotic coupling in oxidative and photosynthetic phosphorylation’, Biochim. Biophys. Acta – Bioenerg., 2011, 1807, (12), pp. 15071538. ISSN 0005-2728. doi: 10.1016/j.bbabio.2011.09.018. Special Section: Peter Mitchell – 50th anniversary of the chemiosmotic theory.
    17. 17)
      • 42. Katz, A.M.: ‘Physiology of the heart’ (Lippincott Williams and Wilkins, Philadelphia, 2011, 5th edn.), ISBN 978-1-60831-171-2.
    18. 18)
      • 30. Cloutier, M., Middleton, R., Wellstead, P.: ‘Feedback motif for the pathogenesis of Parkinson's disease’, IET Syst. Biol., 2012, 6, (3), pp. 8693. ISSN 1751-8849. doi: 10.1049/iet-syb.2011.0076.
    19. 19)
      • 12. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: ‘System dynamics: modeling, simulation, and control of mechatronic systems’ (John Wiley & Sons, 2012, 5th edn.). ISBN 978-0470889084.
    20. 20)
      • 3. Oster, G., Perelson, A., Katchalsky, A.: ‘Network thermodynamics’, Nature, 1971, 234, pp. 393399. doi: 10.1038/234393a0.
    21. 21)
      • 45. Shen, J., Yang, X., Dong, A., et al: ‘Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa’, J. Cell. Physiol., 2005, 203, (3), pp. 457464. ISSN 1097-4652. doi: 10.1002/jcp.20346.
    22. 22)
      • 19. Cloutier, M., Bolger, F.B., Lowry, J.P., et al: ‘An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements’, J. Comput. Neurosci., 2009, 27, (3), pp. 391414. ISSN 0929-5313. doi: 10.1007/s10827-009-0152-8.
    23. 23)
      • 5. Gawthrop, P.J., Crampin, E.J.: ‘Energy-based analysis of biochemical cycles using bond graphs’, Proc. R. Soc. A Math. Phys. Eng. Sci., 2014, 470, (2171), pp. 125. doi: 10.1098/rspa.2014.0459..
    24. 24)
      • 44. Ullah, G., Wei, Y., Dahlem, M.A., et al: ‘The role of cell volume in the dynamics of seizure, spreading depression, and anoxic depolarization’, PLoS Comput. Biol., 2015, 11, (8), p. e1004414. doi: 10.1371/journal.pcbi.1004414.
    25. 25)
      • 14. Cellier, F.E.: ‘Continuous system modelling’ (Springer-Verlag, 1991).
    26. 26)
      • 7. Gawthrop, P.J., Crampin, E.J.: ‘Modular bond-graph modelling and analysis of biomolecular systems’, IET Syst. Biol., 2016, 10, (5), pp. 187201. doi: 10.1049/iet-syb.2015.0083..
    27. 27)
      • 41. Neubauer, S.: ‘The failing heart – an engine out of fuel’, New Engl. J. Med., 2007, 356, (11), pp. 11401151, doi: 10.1056/NEJMra063052.
    28. 28)
      • 2. Paynter, H.M.: ‘Analysis and design of engineering systems’ (MIT Press, Cambridge, MA, 1961).
    29. 29)
      • 24. Sengupta, B., Stemmler, M.B.: ‘Power consumption during neuronal computation’, Proc. IEEE, 2014, 102, (5), pp. 738750. ISSN 0018-9219. doi: 10.1109/JPROC.2014.2307755.
    30. 30)
      • 4. Oster, G.F., Perelson, A.S., Katchalsky, A.: ‘Network thermodynamics: dynamic modelling of biophysical systems’, Q. Rev. Biophys., 1973, 6, (01), pp. 1134. doi: 10.1017/S0033583500000081.
    31. 31)
      • 43. Wei, Y., Ullah, G., Schiff, S.J.: ‘Unification of neuronal spikes, seizures, and spreading depression’, J. Neurosci., 2014, 34, (35), pp. 1173311743. doi: 10.1523/JNEUROSCI.0516-14.2014.
    32. 32)
      • 22. Sengupta, B., Stemmler, M., Laughlin, S.B., et al: ‘Action potential energy efficiency varies among neuron types in vertebrates and invertebrates’, PLoS Comput. Biol., 2010, 6, (7), p. e1000840. doi: 10.1371/journal.pcbi.1000840.
    33. 33)
      • 17. Hodgkin, A.L., Huxley, A.F.: ‘A quantitative description of membrane current and its application to conduction and excitation in nerve’, J. Physiol., 1952, 117, (4), pp. 500544.
    34. 34)
      • 46. Kulawiak, B., Kudin, A.P., Szewczyk, A., et al: ‘BK channel openers inhibit ROS production of isolated rat brain mitochondria’, Exp. Neurol., 2008, 212, (2), pp. 543547, ISSN 0014-4886. doi: http://dx.doi.org/10.1016/j.expneurol.2008.05.004.
    35. 35)
      • 27. Beal M., Flint: ‘Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?’, Ann. Neurol., 1992, 31, (2), pp. 119130. ISSN 1531-8249. doi: 10.1002/ana.410310202.
    36. 36)
      • 26. Niven, J.E., Laughlin, S.B.: ‘Energy limitation as a selective pressure on the evolution of sensory systems’, J. Exp. Biol., 2008, 211, (11), pp. 17921804. ISSN 0022-0949. doi: 10.1242/jeb.017574.
    37. 37)
      • 37. Smith, N.P., Crampin, E.J.: ‘Development of models of active ion transport for whole-cell modelling: cardiac sodium-potassium pump as a case study’, Prog. Biophys. Mol. Biol., 2004, 85, (2–3), pp. 387405. doi: 10.1016/j.pbiomolbio.2004.01.010.
    38. 38)
      • 38. Tran, K., Smith, N.P., Loiselle, D.S., et al: ‘A thermodynamic model of the cardiac sarcoplasmic/endoplasmic Ca2+ (SERCA) pump’, Biophys. J., 2009, 96, (5), pp. 20292042. ISSN 0006-3495. doi: 10.1016/j.bpj.2008.11.045.
    39. 39)
      • 18. Hille, B.: ‘Ion channels of excitable membranes’ (Sinauer Associates, Sunderland, MA, 2001, 3rd edn.). ISBN 978-0-87893-321-1.
    40. 40)
      • 33. Rysselberghe P., Van: ‘Reaction rates and affinities’, J. Chem. Phys., 1958, 29, (3), pp. 640642. doi: 10.1063/1.1744552.
    41. 41)
      • 10. Mukherjee, A., Karmaker, R., Samantaray, A.K.: ‘Bond graph in modeling, simulation and fault indentification’ (I.K. International, New Delhi, 2006).
    42. 42)
      • 51. Kameneva, T., Meffin, H., Burkitt, A.N.: ‘Modelling intrinsic electrophysiological properties of on and off retinal ganglion cells’, J. Comput. Neurosci., 2011, 31, (3), pp. 547561. ISSN 0929-5313. doi: 10.1007/s10827-011-0322-3.
    43. 43)
      • 23. Sengupta, B., Stemmler, M.B., Friston, K.J.: ‘Information and efficiency in the nervous systems synthesis’, PLoS Comput. Biol., 2013, 9, (7), p. e1003157. doi: 10.1371/journal.pcbi.1003157.
    44. 44)
      • 29. Wellstead, P., Cloutier, M. (Ed.): ‘Systems biology of Parkinson's disease’ (Springer New York, 2012). ISBN 978-1-4614-3411-5. doi: 10.1007/978-1-4614-3411-5.
    45. 45)
      • 36. Sterratt, D., Graham, B., Gillies, A., et al: ‘Principles of computational modelling in neuroscience’ (Cambridge University Press, 2011). ISBN 9780521877954.
    46. 46)
      • 15. Greifeneder, J., Cellier, F.E.: ‘Modeling chemical reactions using bond graphs’. Proc. ICBGM12, 10th SCS Intl. Conf. on Bond Graph Modeling and Simulation, Genoa, Italy, 2012, pp. 110121.
    47. 47)
      • 47. Mitchell, P.: ‘Possible molecular mechanisms of the protonmotive function of cytochrome systems’, J. Theor. Biol., 1976, 62, (2), pp. 327367. doi: 10.1016/0022-5193(76)90124-7.
    48. 48)
      • 16. Karnopp, D.: ‘Bond graph models for electrochemical energy storage: electrical, chemical and thermal effects’, J. Franklin Inst., 1990, 327, (6), pp. 983992. ISSN 0016-0032. doi: 10.1016/0016-0032(90)90073-R.
    49. 49)
      • 32. Hurley, D.G., Budden, D.M., Crampin, E.J.: ‘Virtual reference environments: a simple way to make research reproducible’, Brief Bioinform., 2014, 16, (5), pp. 901903. doi: 10.1093/bib/bbu043.
    50. 50)
      • 34. Keener, J.P., Sneyd, J.: ‘Mathematical physiology: I: cellular physiology’ (Springer, 2009, 2nd edn.), vol. 1.
    51. 51)
      • 50. Wellstead, P., Cloutier, M.: ‘An energy systems approach to Parkinson's disease’, Wiley Interdiscip. Rev. Syst. Biol. Med., 2011, 3, (1), pp. 16. ISSN 1939-005X. doi: 10.1002/wsbm.107.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2017.0006
Loading

Related content

content/journals/10.1049/iet-syb.2017.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading