http://iet.metastore.ingenta.com
1887

Controllability and observability analysis of basal ganglia model and feedback linearisation control

Controllability and observability analysis of basal ganglia model and feedback linearisation control

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Deep brain stimulation (DBS) is a clinical remedy to control tremor in Parkinson's disease. In DBS, one of the two main areas of basal ganglia (BG) is stimulated. This stimulation is produced with no feedback of the tremor and often causes a wide range of unpleasant side effects. Using a feedback signal from tremor, the stimulatory signal can be reduced or terminated to avoid extra stimulation and as a result decrease the side effects. To design a closed-loop controller for the non-linear BG model, a complete study of controllability and observability of this system is presented in this study. This study shows that the BG model is controllable and observable. The authors also propose the idea of stimulating the two BG areas simultaneously. A two-part controller is then designed: a feedback linearisation controller for subthalamic nucleus stimulation and a partial state feedback controller for globus pallidus internal stimulation. The controllers are designed to decrease three indicators: the hand tremor, the level of delivered stimulation signal in disease condition, and the ratio of the level of delivered stimulation signal in health condition to disease condition. Considering these three indicators, the simulation results show satisfactory performance.

References

    1. 1)
      • G.S. Berns , T.J. Sejnowski . (1996)
        1. Berns, G.S., Sejnowski, T.J.: ‘How the basal ganglia make decisions’, in Damasio, A.R., Damasio, H., Christen, Y. (EDs): ‘Neurobiology of decision-making’ (Springer Berlin Heidelberg, 1996), pp. 101113.
        .
    2. 2)
      • A.M. De Paor , M.M. Lowery .
        2. De Paor, A.M., Lowery, M.M.: ‘Analysis of the mechanism of action of deep brain stimulation using the concepts of dither injection and the equivalent nonlinearity’, IEEE Trans. Biomed. Eng., 2009, 56, (11), pp. 27172720.
        . IEEE Trans. Biomed. Eng. , 11 , 2717 - 2720
    3. 3)
      • M.S. Titcombe , L. Glass , D. Guehl .
        3. Titcombe, M.S., Glass, L., Guehl, D., et al: ‘Dynamics of Parkinsonian tremor during deep brain stimulation’, Chaos, 2001, 11, (4), pp. 766773.
        . Chaos , 4 , 766 - 773
    4. 4)
      • C.M. Davidson , A.M. De Paor , M.M. Lowery .
        4. Davidson, C.M., De Paor, A.M., Lowery, M.M.: ‘Insights from control theory into deep brain insights from control theory into deep brain’. ELEKTRO, 2012, pp. 27.
        . ELEKTRO , 2 - 7
    5. 5)
      • J.E. Hall . (2010)
        5. Hall, J.E.: ‘Guyton and Hall textbook of medical physiology’ (Elsevier Health Sciences, 2010).
        .
    6. 6)
      • P. Bolam , C. Ingham , P. Magill . (2005)
        6. Bolam, P., Ingham, C., Magill, P.: ‘Dynamic model of basal ganglia functions and Parkinson's disease’, in Bolam, J.P., Ingham, C.A., Magill, P.J. (Eds.): ‘The basal ganglia VIII’, vol. 56, Advances in behavioral biology (Springer, 2005).
        .
    7. 7)
      • J. Lee . (2008)
        7. Lee, J.: ‘A closed-loop deep brain stimulation device with a logarithmic pipeline ADC’ (ProQuest, 2008).
        .
    8. 8)
      • R.E. Suri , C. Albani , A.H. Glattfelder .
        8. Suri, R.E., Albani, C., Glattfelder, A.H.: ‘A dynamic model of motor basal ganglia functions’, Biol. Cybern., 1997, 76, (6), pp. 451458.
        . Biol. Cybern. , 6 , 451 - 458
    9. 9)
      • M.A.J. Lourens . (2013)
        9. Lourens, M.A.J.: ‘Neural network dynamics in Parkinson's disease’ (University of Twente, 2013).
        .
    10. 10)
      • G. Kang , M.M. Lowery .
        10. Kang, G., Lowery, M.M.: ‘Conductance-based model of the basal ganglia in Parkinson's disease’, 2009, pp. 1515.
        . , 15 - 15
    11. 11)
      • M. Haeri , Y. Sarbaz , S. Gharibzadeh .
        11. Haeri, M., Sarbaz, Y., Gharibzadeh, S.: ‘Modeling the Parkinson's tremor and it treatments’, J. Theor. Biol., 2005, 236, (3), pp. 311322.
        . J. Theor. Biol. , 3 , 311 - 322
    12. 12)
      • S. Santaniello , G. Fiengo , L. Glielmo .
        12. Santaniello, S., Fiengo, G., Glielmo, L., et al: ‘Closed-loop control of deep brain stimulation: a simulation study’, IEEE Trans. Neural Syst. Rehabil. Eng., 2011, 19, (1), pp. 1524.
        . IEEE Trans. Neural Syst. Rehabil. Eng. , 1 , 15 - 24
    13. 13)
      • N.I. Krouchev , S.M. Danner , A. Vinet .
        13. Krouchev, N.I., Danner, S.M., Vinet, A., et al: ‘Energy-optimal electrical-stimulation pulses shaped by the least-action principle’, PLoS ONE, 2014, 9, (3), pp. e90480.
        . PLoS ONE , 3 , e90480
    14. 14)
      • A.M.S. Muniz , W. Liu , H. Liu .
        14. Muniz, A.M.S., Liu, W., Liu, H., et al: ‘Assessment of the effects of subthalamic stimulation in Parkinson disease patients by artificial neural network’, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2009, 2009, pp. 56735676.
        . Conf. Proc. IEEE Eng. Med. Biol. Soc. , 5673 - 5676
    15. 15)
      • R. Mehanna , E.C. Lai .
        15. Mehanna, R., Lai, E.C.: ‘Deep brain stimulation in Parkinson's disease’, Transl. Neurodegener., 2013, 2, (1), p. 22.
        . Transl. Neurodegener. , 1 , 22
    16. 16)
      • D. Zhang , P. Poignet , F. Widjaja .
        16. Zhang, D., Poignet, P., Widjaja, F., et al: ‘Neural oscillator based control for pathological tremor suppression via functional electrical stimulation’, Control Eng. Pract., 2011, 19, (1), pp. 7488.
        . Control Eng. Pract. , 1 , 74 - 88
    17. 17)
      • V.S. Vrutangkumar , G. Sachin , J.P.M. Harish .
        17. Vrutangkumar, V.S., Sachin, G., Harish, J.P.M.: ‘Linking increased response time to rest tremors in Parkinson's disease: a feedback control perspective’, 2015, eprint arXiv:1403.0296.
        .
    18. 18)
      • M. Rehan , K.S. Hong .
        18. Rehan, M., Hong, K.S.: ‘Modeling and automatic feedback control of tremor: adaptive estimation of deep brain stimulation’, PLoS ONE, 2013, 8, (4), pp. e62888.
        . PLoS ONE , 4 , e62888
    19. 19)
      • D. Terman , J.E. Rubin , A.C. Yew .
        19. Terman, D., Rubin, J.E., Yew, A.C., et al: ‘Activity patterns in a model for the subthalamopallidal network of the basal ganglia’, J. Neurosci., 2002, 22, (7), pp. 29632976.
        . J. Neurosci. , 7 , 2963 - 2976
    20. 20)
      • A.R. Kent , W.M. Grill .
        20. Kent, A.R., Grill, W.M.: ‘Instrumentation to record evoked potentials for closed-loop control of deep brain stimulation’, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2011, 2011, pp. 67776780.
        . Conf. Proc. IEEE Eng. Med. Biol. Soc. , 6777 - 6780
    21. 21)
      • R. Carron , A. Chaillet , A. Filipchuk .
        21. Carron, R., Chaillet, A., Filipchuk, A., et al: ‘Closing the loop of deep brain stimulation’, Front. Syst. Neurosci., 2013, 7, p. 112.
        . Front. Syst. Neurosci. , 112
    22. 22)
      • A.J. Gillies .
        22. Gillies, A.J.: ‘The role of the subthalamic nucleus in the basal ganglia’, 1995.
        .
    23. 23)
      • O. Karabacak , N.S. Sengor .
        23. Karabacak, O., Sengor, N.S.: ‘A dynamical model of a cognitive function: action selection’. 16th IFAC Congress, 2005.
        . 16th IFAC Congress
    24. 24)
      • Y. Asai , T. Nomura , K. Abe .
        24. Asai, Y., Nomura, T., Abe, K., et al: ‘Classification of dynamics of a model of motor coordination and comparison with Parkinson's disease data’, Biosystems, 2003, 71, (1), pp. 1121.
        . Biosystems , 1 , 11 - 21
    25. 25)
      • R. Edwards , A. Beuter , L. Glass .
        25. Edwards, R., Beuter, A., Glass, L.: ‘Parkinsonian tremor and simplification in network dynamics’, Bull. Math. Biol., 1999, 61, (1), pp. 157177.
        . Bull. Math. Biol. , 1 , 157 - 177
    26. 26)
      • V.S. Gurfinkel , S.M. Osovets .
        26. Gurfinkel, V.S., Osovets, S.M.: ‘Mechanisms of generation of oscillations in the tremor form of Parkinsonism’, Biofizika, 1973, 18, (4), p. 731.
        . Biofizika , 4 , 731
    27. 27)
      • I. Fukumoto .
        27. Fukumoto, I.: ‘Computer simulation of Parkinsonian tremor’, J. Biomed. Eng., 1986, 8, (1), pp. 4955.
        . J. Biomed. Eng. , 1 , 49 - 55
    28. 28)
      • A. Beuter , K. Vasilakos .
        28. Beuter, A., Vasilakos, K.: ‘Tremor: is Parkinson's disease a dynamical disease?’, Chaos, 1995, 5, (1), pp. 3542.
        . Chaos , 1 , 35 - 42
    29. 29)
      • J.R. Chagdes , S. Rietdyk , M.H. Jeffrey .
        29. Chagdes, J.R., Rietdyk, S., Jeffrey, M.H., et al: ‘Dynamic stability of a human standing on a balance board’, J. Biomech., 2013, 46, (15), pp. 25932602.
        . J. Biomech. , 15 , 2593 - 2602
    30. 30)
      • M.S. Titcombe , R. Edwards , A. Beuter .
        30. Titcombe, M.S., Edwards, R., Beuter, A.: ‘Mathematical modelling of parkinsonian tremor’, Nonlinear Stud., 2004, 11, (3), pp. 363384.
        . Nonlinear Stud. , 3 , 363 - 384
    31. 31)
      • K. Rouhollahi , M. Emadi Andani , S.M. Karbassi .
        31. Rouhollahi, K., Emadi Andani, M., Karbassi, S.M., et al: ‘Designing a robust backstepping controller for rehabilitation in Parkinson's disease: a simulation study’, IET Syst. Biol., 2016, 10, (4), pp. 136146.
        . IET Syst. Biol. , 4 , 136 - 146
    32. 32)
      • K. Rouhollahi , M. Emadi Andani , S.M. Karbassi .
        32. Rouhollahi, K., Emadi Andani, M., Karbassi, S.M., et al: ‘Design of robust adaptive controller and feedback error learning for rehabilitation in Parkinson's disease: a simulation study’, IET Syst. Biol., 2017, 11, (1), pp. 1929.
        . IET Syst. Biol. , 1 , 19 - 29
    33. 33)
      • A. Isidori . (2013)
        33. Isidori, A.: ‘Nonlinear control systems’ (Springer Science & Business Media, 2013).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2016.0054
Loading

Related content

content/journals/10.1049/iet-syb.2016.0054
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address