Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Prediction of NSCLC recurrence from microarray data with GEP

Lung cancer is one of the deadliest diseases in the world. Non-small cell lung cancer (NSCLC) is the most common and dangerous type of lung cancer. Despite the fact that NSCLC is preventable and curable for some cases if diagnosed at early stages, the vast majority of patients are diagnosed very late. Furthermore, NSCLC usually recurs sometime after treatment. Therefore, it is of paramount importance to predict NSCLC recurrence, so that specific and suitable treatments can be sought. Nonetheless, conventional methods of predicting cancer recurrence rely solely on histopathology data and predictions are not reliable in many cases. The microarray gene expression (GE) technology provides a promising and reliable way to predict NSCLC recurrence by analysing the GE of sample cells. This study proposes a new model from GE programming to use microarray datasets for NSCLC recurrence prediction. To this end, the authors also propose a hybrid method to rank and select relevant prognostic genes that are related to NSCLC recurrence prediction. The proposed model was evaluated on real NSCLC microarray datasets and compared with other representational models. The results demonstrated the effectiveness of the proposed model.

References

    1. 1)
      • 18. Kim, W., Kim, K.S., Lee, J.E., et al: ‘Development of novel breast cancer recurrence prediction model using support vector machine’, J. Breast Cancer, 2012, 15, pp. 230238.
    2. 2)
      • 3. Crino, L., Weder, W., van Meerbeeck, J., et al: ‘Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up’, Ann. Oncol., 2010, 21, pp. v103v115.
    3. 3)
      • 37. Ferreira, C.: ‘Gene expression programming: a new adaptive algorithm for solving problems’, Complex Syst., 2001, 13, pp. 87129.
    4. 4)
      • 2. Lee, E.-S., Son, D.-S., Kim, S.-H., et al: ‘Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression’, Clin. Cancer Res., 2008, 14, pp. 73977404.
    5. 5)
      • 25. Azzawi, H.: ‘Lung cancer prediction from microarray data by gene expression programming’, IET Syst. Biol., 2016, 10, pp. 168-178.
    6. 6)
      • 26. Koza, J.R.: ‘Genetic programming: on the programming of computers by means of natural selection’ (MIT Press, 1992), vol. 1.
    7. 7)
      • 15. Win, S.L., Htike, Z.Z., Yusof, F., et al: ‘Cancer recurrence prediction using machine learning’, Int. J. Comput. Sci. Inf. Technol. (IJCSIT), 2014, 6.
    8. 8)
      • 43. Joachims, T.: ‘Text categorization with support vector machines: learning with many relevant features’. European Conf. on Machine Learning, 1998, pp. 137142.
    9. 9)
      • 40. Zhu, W., Zeng, N., Wang, N.: ‘Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations’. NESUG Proc.: Health Care and Life Sciences, Baltimore, MD, 2010, pp. 19.
    10. 10)
      • 9. Ransohoff, D.F.: ‘Rules of evidence for cancer molecular-marker discovery and validation’, Nat. Rev. Cancer, 2004, 4, pp. 309314.
    11. 11)
      • 32. Karegowda, A.G., Manjunath, A., Jayaram, M.: ‘Comparative study of attribute selection using gain ratio and correlation based feature selection’, Int. J. Inf. Technol. Knowl. Manage., 2010, 2, pp. 271277.
    12. 12)
      • 38. GeneXproTools: ‘GEPSOFT’. 2014, Version 5.0 ed.
    13. 13)
      • 24. Yu, Z., Lu, H., Si, H., et al: ‘A highly efficient gene expression programming (GEP) model for auxiliary diagnosis of small cell lung cancer’. 2015.
    14. 14)
      • 30. Kumar, C.S., Sree, R.: ‘Application of ranking based attribute selection filters to perform automated evaluation of descriptive answers through sequential minimal optimization models’, ICTACT J. Soft Comput., 2014, 5.
    15. 15)
      • 36. Mundra, P., Rajapakse, J.C.: ‘SVM-RFE with MRMR filter for gene selection’, IEEE Trans. NanoBiosci., 2010, 9, pp. 3137.
    16. 16)
      • 33. Yang, P., Zhou, B.B., Zhang, Z., et al: ‘A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data’, BMC Bioinf., 2010, 11, p. 1.
    17. 17)
      • 28. Marghny, M., El-Semman, I.: ‘Extracting logical classification rules with gene expression programming: microarray case study’. Proc. of the Int. Conf. on Artificial Intelligence and Machine Learning (AIML 05), Cairo, Egypt, 2005, pp. 1116.
    18. 18)
      • 23. Yu, Z., Chen, X.-Z., Cui, L.-H., et al: ‘Prediction of lung cancer based on serum biomarkers by gene expression programming methods’, Asian Pac. J. Cancer Prev., 2013, 15, pp. 93679373.
    19. 19)
      • 1. a. c. society’. (2015, 28/ June): Lung cancer (non-small cell) Available at http://www.cancer.org/.
    20. 20)
      • 22. Kusy, M., Obrzut, B., Kluska, J.: ‘Application of gene expression programming and neural networks to predict adverse events of radical hysterectomy in cervical cancer patients’, Med. Biol. Eng. Comput., 2013, 51, pp. 13571365.
    21. 21)
      • 17. Kawata, Y., Niki, N., Ohmatsu, H., et al: ‘Quantitative classification based on CT histogram analysis of non-small cell lung cancer: correlation with histopathological characteristics and recurrence-free survival’, Med. Phys., 2012, 39, pp. 9881000.
    22. 22)
      • 39. Barrett, T., Wilhite, S.E., Ledoux, P., et al: ‘NCBI GEO: archive for functional genomics data sets – update’, Nucleic Acids Res., 2013, 41, pp. D991D995.
    23. 23)
      • 41. Chen, S., Cowan, C.F., Grant, P.M.: ‘Orthogonal least squares learning algorithm for radial basis function networks’, IEEE Trans. Neural Netw., 1991, 2, pp. 302309.
    24. 24)
      • 42. Pal, M., Mather, P.M.: ‘An assessment of the effectiveness of decision tree methods for land cover classification’, Remote Sens. Environ., 2003, 86, pp. 554565.
    25. 25)
      • 31. Priyadarsini, R.P., Valarmathi, M., Sivakumari, S.: ‘Gain ratio based feature selection method for privacy preservation’, ICTACT J. Soft Comput., 2011, 1, p. 20011.
    26. 26)
      • 16. Srivastava, S., Rathi, M., Gupta, J.: ‘Predictive analysis of lung cancer recurrence’, in (ED.): ‘Advances in computing and communications’, (Springer, 2011), pp. 260269.
    27. 27)
      • 8. Bernardo, J., Bayarri, M., Berger, J., et al: ‘Bayesian factor regression models in the ‘large p, small n’ paradigm’, Bayesian Stat., 2003, 7, pp. 733742.
    28. 28)
      • 19. Ferreira, C., Gepsoft, U.: ‘What is gene expression programming’, in (ED.), 2008.
    29. 29)
      • 4. Hung, J.-J., Wu, Y.-C.: ‘Stage I non-small cell lung cancer: recurrence patterns, prognostic factors and survival’ (INTECH Open Access Publisher, 2012).
    30. 30)
      • 11. Tong, D.L., Schierz, A.C.: ‘Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data’, Artif. Intell. Med., 2011, 53, pp. 4756.
    31. 31)
      • 29. Team, R.C.: ‘R: a language and environment for statistical computing’ (R Foundation for Statistical Computing, Vienna, Austria, 2013), ed: ISBN 3-900051-07-0, 2014.
    32. 32)
      • 45. Sherrod, P.H.: ‘DTREG predictive modeling software. Users manual’. Disponível online no url: (http://www.dtreg.com/DTREG.pdf) (Acedido 28 Março 2014), 2008.
    33. 33)
      • 20. Zhou, C., Xiao, W., Tirpak, T.M., et al: ‘Evolving accurate and compact classification rules with gene expression programming’, IEEE Trans. Evol. Comput., 2003, 7, pp. 519531.
    34. 34)
      • 7. Wei, J.S., Greer, B.T., Westermann, F., et al: ‘Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma’, Cancer Res., 2004, 64, pp. 68836891.
    35. 35)
      • 5. Sugimura, H., Nichols, F.C., Yang, P., et al: ‘Survival after recurrent nonsmall-cell lung cancer after complete pulmonary resection’, Ann. Thorac. Surg., 2007, 83, pp. 409418.
    36. 36)
      • 6. Pellagatti, A., Vetrie, D., Langford, C.F., et al: ‘Gene expression profiling in polycythemia vera using cDNA microarray technology’, Cancer Res., 2003, 63, pp. 39403944.
    37. 37)
      • 21. Ferreira, C.: ‘Gene expression programming in problem solving’, in (ED.): ‘Soft computing and industry’ (Springer, 2002), pp. 635653.
    38. 38)
      • 10. Zhang, F., Kaufman, H.L., Deng, Y., et al: ‘Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood’, BMC Med. Genomics, 2013, 6, p. S4.
    39. 39)
      • 13. Student, S., Fujarewicz, K.: ‘Stable feature selection and classification algorithms for multiclass microarray data’, Biol. Direct, 2012, 7, p. 33.
    40. 40)
      • 27. Golberg, D.E.: ‘Genetic algorithms in search, optimization, machine learning’ (Addison Wesley, 1989), vol. 1989.
    41. 41)
      • 34. WEKA. WEKA1993, Available at http://www.weka.wikispaces.com.
    42. 42)
      • 12. Su, Y., Wang, R., Li, C., et al: ‘A dynamic subspace learning method for tumor classification using microarray gene expression data’. 2011 Seventh Int. Conf. Natural Computation (ICNC), 2011, pp. 396400.
    43. 43)
      • 14. Ford, W., Park, J.W., Campbell, A.S., et al: ‘Classifying lung cancer recurrence time using novel ensemble method with gene network based input models’, Procedia Comput. Sci., 2012, 12, pp. 444449.
    44. 44)
      • 35. Duan, K.-B., Rajapakse, J.C., Wang, H., et al: ‘Multiple SVM-RFE for gene selection in cancer classification with expression data’, IEEE Trans. NanoBiosci., 2005, 4, pp. 228234.
    45. 45)
      • 44. Wang, Q., Garrity, G.M., Tiedje, J.M., et al: ‘Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy’, Appl. Environ. Microbiol., 2007, 73, pp. 52615267.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2016.0033
Loading

Related content

content/journals/10.1049/iet-syb.2016.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address