Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Excluded volume effects in on- and off-lattice reaction–diffusion models

Mathematical models are important tools to study the excluded volume effects on reaction–diffusion systems, which are known to play an important role inside living cells. Detailed microscopic simulations with off-lattice Brownian dynamics become computationally expensive in crowded environments. In this study, the authors therefore investigate to which extent on-lattice approximations, the so-called cellular automata models, can be used to simulate reactions and diffusion in the presence of crowding molecules. They show that the diffusion is most severely slowed down in the off-lattice model, since randomly distributed obstacles effectively exclude more volume than those ordered on an artificial grid. Crowded reaction rates can be both increased and decreased by the grid structure and it proves important to model the molecules with realistic sizes when excluded volume is taken into account. The grid artefacts increase with increasing crowder density and they conclude that the computationally more efficient on-lattice simulations are accurate approximations only for low crowder densities.

References

    1. 1)
      • 30. Takahashi, K., Vel Arjunan, S.N., Tomita, M.: ‘Space in systems biology of signaling pathways – towards intracellular molecular crowding in silico’, FEBS Lett., 2005, 579, (8), pp. 17831788.
    2. 2)
      • 13. Andrews, S.S., Addy, N.J., Brent, R., et al: ‘Detailed simulations of cell biology with Smoldyn 2.1’, PLoS Comput. Biol., 2010, 6, (3), p. e1000705.
    3. 3)
      • 10. Saxton, M.J.: ‘A biological interpretation of transient anomalous subdiffusion. I. qualitative model’, Biophys. J., 2007, 92, (4), pp. 11781191.
    4. 4)
      • 22. Xie, Z.R., Chen, J., Wu, Y.: ‘A coarse-grained model for the simulations of biomolecular interactions in cellular environments’, J. Chem. Phys., 2014, 140, (5), p. 054112.
    5. 5)
      • 11. Schöneberg, J., Ullrich, A., Noé, F.: ‘Simulation tools for particle-based reaction-diffusion dynamics in continuous space’, BMC Biophys., 2014, 7, (1), p. 11.
    6. 6)
      • 19. Schöneberg, J., Heck, M., Hofmann, K.P., et al: ‘Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes’, Biophys. J., 2014, 107, (5), pp. 10421053.
    7. 7)
      • 3. Krapf, D.: ‘Chapter five-mechanisms underlying anomalous diffusion in the plasma membrane’, Cur. Top. Membr., 2015, 75, pp. 167207.
    8. 8)
      • 35. Saxton, M.J.: ‘Lateral diffusion in a mixture of mobile and immobile particles. A Monte Carlo study’, Biophys. J., 1990, 58, (5), pp. 13031306.
    9. 9)
      • 24. Donev, A., Bulatov, V.V., Oppelstrup, T., et al: ‘A first-passage kinetic Monte Carlo algorithm for complex diffusion-reaction systems’, J. Comput. Phys., 2010, 229, (9), pp. 32143236.
    10. 10)
      • 5. Medalia, O., Weber, I., Frangakis, A.S., et al: ‘Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography’, Science, 2002, 298, (5596), pp. 12091213.
    11. 11)
      • 42. Ben-Avraham, D., Havlin, S.: ‘Diffusion and reactions in fractals and disordered systems’ (Cambridge University Press, 2000).
    12. 12)
      • 15. Marquez-Lago, T.T., Leier, A., Burrage, K.: ‘Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology’, IET Syst. Biol., 2012, 6, (4), p. 134.
    13. 13)
      • 21. Ridgway, D., Broderick, G., Lopez-Campistrous, A., et al: ‘Coarse grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm’, Biophys. J., 2008, 94, (10), pp. 37483759.
    14. 14)
      • 20. Gruenert, G., Ibrahim, B., Lenser, T., et al: ‘Rule-based spatial modeling with diffusing, geometrically constrained molecules’, BMC Bioinform., 2010, 11, p. 307.
    15. 15)
      • 28. Van Zon, J.S., Rein Ten Wolde, P.: ‘Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics’, Phys. Rev. Lett., 2005, 94, (12), pp. 14.
    16. 16)
      • 7. Hansen, M.M.K., Meijer, L.H.H., Spruijt, E., et al: ‘Macromolecular crowding creates heterogeneous environments of gene expression in picolitre droplets’, Nat. Nanotechnol., 2015, 11, (October), pp. 18.
    17. 17)
      • 12. Andrews, S., Bray, D.: ‘Stochastic simulation of chemical reactions with spatial resolution and single molecule detail’, Phys. Biol., 2004, 1, (3–4), pp. 137151.
    18. 18)
      • 25. Oppelstrup, T., Bulatov, V.V., Donev, A., et al: ‘First-passage kinetic Monte Carlo method’, Phys. Rev. E, 2009, 80, (6), pp. 114.
    19. 19)
      • 1. Luby-Phelps, K.: ‘Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area’, Int. Rev. Cytol., 1999, 192, pp. 189221.
    20. 20)
      • 45. Quintanilla, J., Torquato, S., Ziff, R.M.: ‘Efficient measurement of the percolation threshold for fully penetrable discs’, J. Phys. A, Math. Gen., 2000, 33, (42), pp. L399L407.
    21. 21)
      • 51. Grima, R.: ‘Intrinsic biochemical noise in crowded intracellular conditions’, J. Chem. Phys., 2010, 132, (18), p. 185102.
    22. 22)
      • 29. Lee, B., LeDuc, P.R., Schwartz, R.: ‘Stochastic off-lattice modeling of molecular self-assembly in crowded environments by Green's function reaction dynamics’, Phys. Rev. E, 2008, 78, (3), p. 031911.
    23. 23)
      • 38. Grima, R., Schnell, S.: ‘A systematic investigation of the rate laws valid in intracellular environments’, Biophys. Chem., 2006, 124, (1), pp. 110.
    24. 24)
      • 47. Hall, D., Minton, A.P.: ‘Macromolecular crowding: qualitative and semi-quantitative successes, quantitative challenges’, Biochim. Biophys. Acta – Proteins Proteomics, 2003, 1649, (2), pp. 127139.
    25. 25)
      • 40. Gomez, D., Klumpp, S.: ‘Biochemical reactions in crowded environments: revisiting the effects of volume exclusion with simulations’, Front. Phys., 2015, 3, (June), pp. 114.
    26. 26)
      • 18. Klann, M.T., Lapin, A., Reuss, M.: ‘Agent-based simulation of reactions in the crowded and structured intracellular environment: influence of mobility and location of the reactants’, BMC Syst. Biol., 2011, 5, (1), p. 71.
    27. 27)
      • 17. Schöneberg, J., Noé, F.: ‘ReaDDy – a software for particle-based reaction- diffusion dynamics in crowded cellular environments’, PLoS One, 2013, 8, (9), p. e74261.
    28. 28)
      • 6. Berry, H.: ‘Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation’, Biophys. J., 2002, 83, (4), pp. 18911901.
    29. 29)
      • 54. Zimmermann, S.B., Minton, A.P.: ‘Macromolecular crowding: biochemical, biophysical, and physiological consequences’, Annu. Rev. Biaphys. Biamal. Struct., 1993, 22, pp. 2765.
    30. 30)
      • 39. Mourão, M., Kreitman, D., Schnell, S.: ‘Unravelling the impact of obstacles in diffusion and kinetics of an enzyme catalysed reaction’, Phys. Chem. Chem. Phys., 2014, 16, (10), pp. 44924503.
    31. 31)
      • 41. Meinecke, L., Lötstedt, P.: ‘Stochastic diffusion processes on Cartesian meshes’, J. Comput. Appl. Math., 2016, 294, pp. 111.
    32. 32)
      • 26. Takahashi, K., Tanase-Nicola, S., ten Wolde, P.R.: ‘Spatio-temporal correlations can drastically change the response of a MAPK pathway’, Proc. Natl. Acad. Sci. USA, 2010, 107, (6), pp. 24732478.
    33. 33)
      • 32. Boon, J.P., David, D., Kapral, R., et al: ‘Lattice gas automata for reactive systems’, Phys. Rep., 1996, 273, (2), pp. 55147.
    34. 34)
      • 8. Ando, T., Skolnick, J.: ‘Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion’, Proc. Natl. Acad. Sci., 2010, 107, (43), pp. 1845718462.
    35. 35)
      • 4. Jin, S., Verkman, A.S.: ‘Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena’, J. Phys. Chem. B, 2007, 111, (14), pp. 36253632.
    36. 36)
      • 44. Newman, M.E.J., Ziff, R.M.: ‘Efficient Monte Carlo algorithm and high-precision results for percolation’, Phys. Rev. Lett., 2000, 85, (19), pp. 41044107.
    37. 37)
      • 50. Grasberger, B., Minton, A.P., DeLisi, C., et al: ‘Interaction between proteins localized in membranes’, Proc. Natl. Acad. Sci. USA, 1986, 83, (17), pp. 62586262.
    38. 38)
      • 52. Andrews, S.: ‘User Manual for Smoldyn’.
    39. 39)
      • 34. Saxton, M.J.: ‘Lateral diffusion in an archipelago. The effect of mobile obstacles’, Biophys. J., 1987, 52, (6), pp. 989997.
    40. 40)
      • 31. McGuffee, S.R., Elcock, A.H.: ‘Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm’, PLoS Comput. Biol., 2010, 6, (3), p. e1000694.
    41. 41)
      • 9. Penington, C.J., Hughes, B.D., Landman, K.A.: ‘Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena’, Phys. Rev. E, 2011, 84, (4), p. 041120.
    42. 42)
      • 49. Savageau, M.A.: ‘Biochemical systems analysis: a study of function and design in molecular biology’ (Addison-Wesley, 1976).
    43. 43)
      • 37. Saxton, M.J.: ‘Lateral diffusion in an archipelago. Single-particle diffusion’, Biophys. J., 1993, 64, (6), pp. 17661780.
    44. 44)
      • 43. Weigel, A.V., Ragi, S., Reid, M.L., et al: ‘Obstructed diffusion propagator analysis for single-particle tracking’, Phys. Rev. E, 2012, 85, (4), pp. 18.
    45. 45)
      • 36. Saxton, M.J.: ‘Anomalous diffusion due to obstacles: a Monte Carlo study’, Biophys. J., 1994, 66, (2 Pt 1), pp. 394401.
    46. 46)
      • 33. Ellery, A.J., Baker, R.E., Simpson, M.J.: ‘Calculating the Fickian diffusivity for a lattice-based random walk with agents and obstacles of different shapes and sizes’, Phys. Biol., 2015, 12, (6), p. 066010.
    47. 47)
      • 46. Meinecke, L.: ‘Multiscale modeling of diffusion in a crowded environment’. Preprint arXiv:1603.05605, 2016, pp. 127.
    48. 48)
      • 14. Gilbert, D., Heiner, M., Takahashi, K., et al: ‘Multiscale spatial computational systems biology (Dagstuhl Seminar 14481)’, Dagstuhl Rep., 2015, 4, (11), pp. 138226.
    49. 49)
      • 2. Schnell, S., Turner, T.E.: ‘Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws’, Prog. Biophys. Mol. Biol., 2004, 85, (2–3), pp. 235260.
    50. 50)
      • 23. van Zon, J.S., ten Wolde, P.R.: ‘Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space’, J. Chem. Phys., 2005, 123, (23), p. 234910.
    51. 51)
      • 48. Pitulice, L., Vilaseca, E., Pastor, I., et al: ‘Monte Carlo simulations of enzymatic reactions in crowded media. Effect of the enzyme-obstacle relative size’, Math. Biosci., 2014, 251, (1), pp. 7282.
    52. 52)
      • 27. Tomita, M., Hashimoto, K., Takahashi, K., et al: ‘E-CELL: software environment for whole-cell simulation’, Bioinformatics, 1999, 15, (1), pp. 7284.
    53. 53)
      • 16. Stiles, J.R., Van Helden, D., Bartol, T.M., et al: ‘Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle’, Proc. Natl. Acad. Sci. USA, 1996, 93, (12), pp. 57475752.
    54. 54)
      • 53. Ellis, R.J.: ‘Macromolecular crowding: obvious but underappreciated’, Trends Biochem. Sci., 2001, 26, (10), pp. 597604.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2016.0021
Loading

Related content

content/journals/10.1049/iet-syb.2016.0021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address