Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Recent omics technologies and their emerging applications for personalised medicine

A major objective of ‘omics’ technologies is to understand genetic causality of complex traits of human diseases. High-throughput omics technologies and their application to medicine open up remarkable opportunities for realising optimised medical treatment for individuals. Because many major breakthrough and discoveries in this field have been driven by the development of new omics technologies, in this review, the authors aim to provide an in-depth description of their underlying principles as a foundation of developing another new omics technology, and to introduce their emerging applications for personalised medicine. The systems biology approach is then introduced as a future direction towards actionable personalised medicine.

References

    1. 1)
      • 14. Horvath, A., Pakala, S.B., Mudvari, P., et al: ‘Novel insights into breast cancer genetic variance through RNA sequencing’, Sci. Rep., 2013, 3, p. 2256.
    2. 2)
      • 27. Xu, X., Hou, Y., Yin, X., et al: ‘Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor’, Cell, 2012, 148, pp. 886895.
    3. 3)
      • 67. Howlader, N., Noone, A., Krapcho, M., et al: ‘Cancer statistics review, 1975–2011’ (National Cancer Institute, Bethesda, MD, 2014).
    4. 4)
      • 45. Kitzman, J.O., Snyder, M.W., Ventura, M., et al: ‘Noninvasive whole-genome sequencing of a human fetus’, Sci. Transl. Med., 2012, 4, (137), pp. 137ra76137ra76.
    5. 5)
      • 65. Antoniou, A., Pharoah, P., Narod, S., et al: ‘Average risks of breast and ovarian cancer associated with brca1 or brca2 mutations detected in case series unselected for family history: a combined analysis of 22 studies’, Am. J. Human Genet., 2003, 72, (5), pp. 11171130.
    6. 6)
      • 23. Shen, L., Kondo, Y., Rosner, G.L., et al: ‘Mgmt promoter methylation and field defect in sporadic colorectal cancer’, J. Natl. Cancer Inst., 2005, 97, (18), pp. 13301338.
    7. 7)
      • 8. Metzker, M.L.: ‘Sequencing technologiesthe next generation’, Nat. Rev. Genet., 2010, 11, (1), pp. 3146.
    8. 8)
      • 12. Li, B., Ruotti, V., Stewart, R.M., et al: ‘Rna-seq gene expression estimation with read mapping uncertainty’, Bioinformatics, 2010, 26, (4), pp. 493500.
    9. 9)
      • 13. Jiang, L., Schlesinger, F., Davis, C.A., et al: ‘Synthetic spike-in standards for RNA-seq experiments’, Genome Res., 2011, 21, pp. 15431551.
    10. 10)
      • 28. Du, W., Elemento, O.: ‘Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies’, Oncogene, 2015, 34, pp. 32153225.
    11. 11)
      • 74. Hantash, F.M., Olson, S.C., Anderson, B., et al: ‘Rapid one-step carrier detection assay of mucolipidosis IV mutations in the Ashkenazi Jewish population’, J. Mol. Diagn., 2006, 8, pp. 282287.
    12. 12)
      • 90. Yamanaka, R.: ‘Cell- and peptide-based immunotherapeutic approaches for glioma’, Trends Mol. Med., 2008, 14, pp. 228235.
    13. 13)
      • 16. ONeill, L.P., Turner, B.M.: ‘Immunoprecipitation of native chromatin: Nchip’, Methods, 2003, 31, (1), pp. 7682.
    14. 14)
      • 95. Brentjens, R.J., Davila, M.L., Riviere, I., et al: ‘Cd19-targeted t cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia’, Sci. Transl. Med., 2013, 5, (177), pp. 177ra38177ra38.
    15. 15)
      • 89. G. M.-a. T. G. Group: ‘Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials’, Lancet, 2002, 359, (9311), pp. 10111018.
    16. 16)
      • 82. Schnitt, S.J.: ‘Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy’, Mod. Pathol., 2010, 23, pp. S60S64.
    17. 17)
      • 31. Ong, S.-E., Blagoev, B., Kratchmarova, I., et al: ‘Stable isotope labeling by amino acids in cell culture, silac, as a simple and accurate approach to expression proteomics’, Mol. Cell. Proteomics, 2002, 1, (5), pp. 376386.
    18. 18)
      • 33. Qiu, P., Simonds, E.F., Bendall, S.C., et al: ‘Extracting a cellular hierarchy from highdimensional cytometry data with spade’, Nat. Biotechnol., 2011, 29, (10), pp. 886891.
    19. 19)
      • 81. Issa, J.-P.J., Ottaviano, Y.L., Celano, P., et al: ‘Methylation of the oestrogen receptor cpg island links ageing and neoplasia in human colon’, Nat. Genet., 1994, 7, (4), pp. 536540.
    20. 20)
      • 83. Nielsen, D.L., Kümler, I., Palshof, J.A., et al: ‘Efficacy of her2-targeted therapy in metastatic breast cancer. monoclonal antibodies and tyrosine kinase inhibitors’, Breast, 2013, 22, (1), pp. 112.
    21. 21)
      • 35. Behbehani, G.K., Bendall, S.C., Clutter, M.R., et al: ‘Single-cell mass cytometry adapted to measurements of the cell cycle’, Cytometry A, 2012, 81, (7), pp. 552566.
    22. 22)
      • 30. Wei, X., Li, L.: ‘Mass spectrometry-based proteomics and peptidomics for biomarker discovery in neurodegenerative diseases’, Int. J. Clin. Exp. Pathol., 2009, 2, (2), pp. 132148.
    23. 23)
      • 47. Chan, K.C.A., Zhang, J., Hui, A.B.Y., et al: ‘Size distributions of maternal and fetal DNA in maternal plasma’, Clin. Chem., 2004, 50, pp. 8892.
    24. 24)
      • 1. Venter, J.C., Adams, M.D., Myers, E.W., et al: ‘The sequence of the human genome’, Science, 2001, 291, (5507), pp. 13041351.
    25. 25)
      • 78. A.C. Society: ‘American cancer society breast cancer facts & figures’. Breast Cancer Facts and Figures, 2015, pp. 138.
    26. 26)
      • 39. Bianchi, D.W., Simpson, J., Jackson, L., et al: ‘Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of nifty i data’, Prenat. Diagn., 2002, 22, (7), pp. 609615.
    27. 27)
      • 46. Hill, M., Barrett, A.N., White, H., et al: ‘Uses of cell free fetal dna in maternal circulation’, Best Pract. Res. Clin. Obstet. Gynaecol., 2012, 26, (5), pp. 639654.
    28. 28)
      • 73. Bach, G.: ‘Mucolipidosis type IV’, Mol. Genet. Metab., 2001, 73, pp. 197203.
    29. 29)
      • 38. Schlütter, J.M., Kirkegaard, I., Petersen, O.B., et al: ‘Fetal gender and several cytokines are associated with the number of fetal cells in maternal blood–an observational study’, PloS One, 2014, 9, (9), p. e106934.
    30. 30)
      • 84. Klijn, J.G., Setyono-Han, B., Foekens, J.A.: ‘Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer’, Steroids, 2000, 65, (10), pp. 825830.
    31. 31)
      • 5. Sanger, F., Coulson, A.R.: ‘A rapid method for determining sequences in dna by primed synthesis with dna polymerase’, J. Mol. Biol., 1975, 94, (3), pp. 441448.
    32. 32)
      • 51. Grygalewicz, B., Woroniecka, R., Rygier, J., et al: ‘Monoallelic and biallelic deletions of 13q14 in a group of cll/sll patients investigated by cgh haematological cancer and snp array (8 × 60k)’, Mol. Cytogenet., 2016, 9, (1), p. 1.
    33. 33)
      • 61. Easton, D.F., et al: ‘How many more breast cancer predisposition genes are there’, Breast Cancer Res., 1999, 1, (1), pp. 1417.
    34. 34)
      • 50. Chan, K.A., Ding, C., Gerovassili, A., et al: ‘Hypermethylated rassf1a in maternal plasma: a universal fetal dna marker that improves the reliability of noninvasive prenatal diagnosis’, Clin. Chem., 2006, 52, (12), pp. 22112218.
    35. 35)
      • 6. Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., et al: ‘Accurate whole human genome sequencing using reversible terminator chemistry’, Nature, 2008, 456, (7218), pp. 5359.
    36. 36)
      • 15. Park, P.J.: ‘ChIP–seq: advantages and challenges of a maturing technology’, Nat. Rev. Genet., 2009, 10, pp. 669680.
    37. 37)
      • 58. King, M.-C., Marks, J.H., Mandell, J.B., et al: ‘Breast and ovarian cancer risks due to inherited mutations in brca1 and brca2’, Science, 2003, 302, (5645), pp. 643646.
    38. 38)
      • 10. Turner, E.H., Lee, C., Ng, S.B., et al: ‘Massively parallel exon capture and library-free resequencing across 16 genomes’, Nat. Methods, 2009, 6, (5), pp. 315316.
    39. 39)
      • 85. Sommer, S., Fuqua, S.A.: ‘Estrogen receptor and breast cancer’, in ‘Seminars in cancer biology’ (Elsevier, 2001), vol. 11, pp. 339352.
    40. 40)
      • 29. Topol, E.J.: ‘Individualized medicine from prewomb to tomb’, Cell, 2014, 157, pp. 241253.
    41. 41)
      • 54. Strittmatter, W.J., Saunders, A.M., Schmechel, D., et al: ‘Apolipoprotein e: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial alzheimer disease’, Proc. Natl. Acad. Sci., 1993, 90, (5), pp. 19771981.
    42. 42)
      • 19. Issa, J.-P.: ‘Cancer prevention: epigenetics steps up to the plate’, Cancer Prev. Res., 2008, 1, pp. 219222.
    43. 43)
      • 21. Esteller, M.: ‘CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future’, Oncogene, 2002, 21, pp. 54275440.
    44. 44)
      • 37. Grati, F.R.: ‘Chromosomal mosaicism in human feto-placental development: implications for prenatal diagnosis’, J. Clin. Med., 2014, 3, (3), pp. 809837.
    45. 45)
      • 62. Holloman, W.K.: ‘Unraveling the mechanism of brca2 in homologous recombination’, Nat. Struct. Mol. Biol., 2011, 18, (7), pp. 748754.
    46. 46)
      • 64. Antoniou, A.C., Pharoah, P.D.P., Narod, S., et al: ‘Breast and ovarian cancer risks to carriers of the BRCA1 5382insc and 185delAG and BRCA2 6174delt mutations: a combined analysis of 22 population based studies’, J. Med. Genet., 2005, 42, pp. 602603.
    47. 47)
      • 25. Nawy, T.: ‘Single-cell sequencing’, Nat. Methods, 2014, 11, p. 18.
    48. 48)
      • 75. Waldmüller, S., Sakthivel, S., Saadi, A.V., et al: ‘Novel deletions in MYH7 and MYBPC3 identified in Indian families with familial hypertrophic cardiomyopathy’, J. Mol. Cell. Cardiol., 2003, 35, pp. 623636.
    49. 49)
      • 48. Lo, Y.M., Zhang, J., Leung, T.N., et al: ‘Rapid clearance of fetal DNA from maternal plasma’, Am. J. Hum. Genet., 1999, 64, pp. 218224.
    50. 50)
      • 77. Deprez, R.L., Muurling-Vlietman, J.J., Hruda, J., et al: ‘Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the mybpc3 gene’, J. Med. Genet., 2006, 43, (10), pp. 829832.
    51. 51)
      • 2. Rothberg, J.M., Hinz, W., Rearick, T.M., et al: ‘An integrated semiconductor device enabling non-optical genome sequencing’, Nature, 2011, 475, (7356), pp. 348352.
    52. 52)
      • 57. Takei, N., Miyashita, A., Tsukie, T., et al: ‘Genetic association study on in and around the APOE in late-onset alzheimer disease in Japanese’, Genomics, 2009, 93, pp. 441448.
    53. 53)
      • 18. Grunau, C., Clark, S.J., Rosenthal, A.: ‘Bisulfite genomic sequencing: systematic investigation of critical experimental parameters’, Nucleic Acids Res., 2001, 29, pp. E65E65.
    54. 54)
      • 70. D'Argenio, V., Esposito, M.V., Telese, A., et al: ‘The molecular analysis of brca1 and brca2: Next-generation sequencing supersedes conventional approaches’, Clin. Chim. Acta, 2015, 446, pp. 221225.
    55. 55)
      • 9. Ng, P.C., Murray, S.S., Levy, S., et al: ‘An agenda for personalized medicine’, Nature, 2009, 461, pp. 724726.
    56. 56)
      • 59. Hall, J., Lee, M., Newman, B., et al: ‘Linkage of early-onset familial breast cancer to chromosome 17q21’, Science, 1990, 250, (4988), pp. 16841689.
    57. 57)
      • 20. Landan, G., Cohen, N.M., Mukamel, Z., et al: ‘Epigenetic polymorphi1sm and the stochastic formation of differentially methylated regions in normal and cancerous tissues’, Nat. Genet., 2012, 44, pp. 12071214.
    58. 58)
      • 71. Frebourg, T., Barbier, N., Yan, Y., et al: ‘Germ-line p53 mutations in 15 families with li-fraumeni syndrome.’, Am J. Hum. Genet., 1995, 56, (3), p. 608.
    59. 59)
      • 24. Shapiro, E., Biezuner, T., Linnarsson, S.: ‘Single-cell sequencing-based technologies will revolutionize whole-organism science’, Nat. Rev. Genet., 2013, 14, pp. 618630.
    60. 60)
      • 72. Lang, G.A., Iwakuma, T., Suh, Y.-A., et al: ‘Gain of function of a p53 hot spot mutation in a mouse model of li-fraumeni syndrome’, Cell, 2004, 119, (6), pp. 861872.
    61. 61)
      • 49. Lo, Y.M.D., Tsui, N.B.Y., Chiu, R.W.K., et al: ‘Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection’, Nat. Med., 2007, 13, pp. 218223.
    62. 62)
      • 91. Yu, J.S., Wheeler, C.J., Zeltzer, P.M., et al: ‘Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial t-cell infiltration’, Cancer Res., 2001, 61, (3), pp. 842847.
    63. 63)
      • 36. Cederholm, M., Haglund, B., Axelsson, O.: ‘Infant morbidity following amniocentesis and chorionic villus sampling for prenatal karyotyping’, BJOG: Int. J. Obstet. Gynaecol., 2005, 112, (4), pp. 394402.
    64. 64)
      • 76. Richard, P., Charron, P., Carrier, L., et al: ‘Hypertrophic cardiomyopathy distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy’, Circulation, 2003, 107, (17), pp. 22272232.
    65. 65)
      • 92. Schneider, T., Gerhards, R., Kirches, E., et al: ‘Preliminary results of active specific immunization with modified tumor cell vaccine in glioblastoma multiforme’, J. Neurooncol., 2001, 53, pp. 3946.
    66. 66)
      • 40. Lo, Y.M., Corbetta, N., Chamberlain, P.F., et al: ‘Presence of fetal DNA in maternal plasma and serum’, Lancet, 1997, 350, pp. 485487.
    67. 67)
      • 80. Barzi, A., Lenz, A.M., Labonte, M.J., et al: ‘Molecular pathways: Estrogen pathway in colorectal cancer’, Clin. Cancer Res., 2013, 19, pp. 58425848.
    68. 68)
      • 17. Nguyen, C.T., Weisenberger, D.J., Velicescu, M., et al: ‘Histone H3-Lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2 -deoxycytidine’, Cancer Res., 2002, 62, pp. 64566461.
    69. 69)
      • 42. Norwitz, E.R., Levy, B.: ‘Noninvasive prenatal testing: the future is now’, Rev. Obstet. Gynecol., 2013, 6, (2), pp. 4862.
    70. 70)
      • 79. Manolio, T.A., Collins, F.S., Cox, N.J., et al: ‘Finding the missing heritability of complex diseases’, Nature, 2009, 461, pp. 747753.
    71. 71)
      • 93. Palucka, K., Banchereau, J.: ‘Dendritic-cell-based therapeutic cancer vaccines’, Immunity, 2013, 39, pp. 3848.
    72. 72)
      • 53. Sherry, S.T., Ward, M.-H., Kholodov, M., et al: ‘dbsnp: the ncbi database of genetic variation’, Nucleic Acids Res., 2001, 29, (1), pp. 308311.
    73. 73)
      • 87. Niepel, M., Hafner, M., Pace, E.A., et al: ‘Profiles of basal and stimulated receptor signaling networks predict drug response in breast cancer lines’, Sci. Signal., 2013, 6, p. ra84.
    74. 74)
      • 60. Wooster, R., Neuhausen, S.L., Mangion, J., et al: ‘Localization of a breast cancer susceptibility gene, brca2, to chromosome 13q12-13’, Science, 1994, 265, (5181), pp. 20882090.
    75. 75)
      • 7. Fedurco, M., Romieu, A., Williams, S., et al: ‘Bta, a novel reagent for dna attachment on glass and efficient generation of solid-phase amplified dna colonies’, Nucleic Acids Res., 2006, 34, (3), pp. e22e22.
    76. 76)
      • 34. Amir, E.-a.D., Davis, K.L., Tadmor, M.D., et al: ‘visne enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia’, Nat. Biotechnol., 2013, 31, (6), pp. 545552.
    77. 77)
      • 69. Vuttariello, E., Borra, M., Calise, C., et al: ‘A new rapid methodological strategy to assess brca mutational status’, Mol. Biotechnol., 2013, 54, (3), pp. 954960.
    78. 78)
      • 98. Stitziel, N.O., Kiezun, A., Sunyaev, S.: ‘Computational and statistical approaches to analyzing variants identified by exome sequencing’, Genome Biol., 2011, 12, (9), pp. 110.
    79. 79)
      • 43. Bianchi, D.W., Parsa, S., Bhatt, S., et al: ‘Fetal sex chromosome testing by maternal plasma dna sequencing: clinical laboratory experience and biology’, Obstet. Gynecol., 2015, 125, (2), pp. 375382.
    80. 80)
      • 99. Choi, M., Shi, J., Jung, S.H., et al: ‘Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to dna damage’, Sci. Signal, 2012, 5, (251), p. ra83.
    81. 81)
      • 4. Eid, J., Fehr, A., Gray, J., et al: ‘Real-time dna sequencing from single polymerase molecules’, Science, 2009, 323, (5910), pp. 133138.
    82. 82)
      • 52. Atlija, M., Arranz, J.-J., Martinez-Valladares, M., et al: ‘Detection and replication of qtl underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50k snp array’, Genet. Sel. Evol., 2016, 48, (1), pp. 116.
    83. 83)
      • 3. Kasianowicz, J.J., Brandin, E., Branton, D., et al: ‘Characterization of individual polynucleotide molecules using a membrane channel’, Proc. Natl. Acad. Sci., 1996, 93, (24), pp. 1377013773.
    84. 84)
      • 96. Grupp, S.A., Kalos, M., Barrett, D., et al: ‘Chimeric antigen receptor-modified t cells for acute lymphoid leukemia’, New Engl. J. Med., 2013, 368, (16), pp. 15091518.
    85. 85)
      • 63. Silver, D.P., Livingston, D.M.: ‘Mechanisms of brca1 tumor suppression’, Cancer Discov., 2012, 2, (8), pp. 679684.
    86. 86)
      • 97. Majid, S., Kikuno, N., Nelles, J., et al: ‘Genistein induces the p21waf1/cip1 and p16ink4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification’, Cancer Res., 2008, 68, (8), pp. 27362744.
    87. 87)
      • 66. Chen, S., Parmigiani, G.: ‘Meta-analysis of brca1 and brca2 penetrance’, J. Clin. Oncol., 2007, 25, (11), pp. 13291333.
    88. 88)
      • 32. Bandura, D.R., Baranov, V.I., Ornatsky, O.I., et al: ‘Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry’, Anal. Chem., 2009, 81, (16), pp. 68136822.
    89. 89)
      • 94. Provasi, E., Genovese, P., Lombardo, A., et al: ‘Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer’, Nat. Med., 2012, 18, pp. 807815.
    90. 90)
      • 26. Navin, N., Kendall, J., Troge, J., et al: ‘Tumour evolution inferred by single-cell sequencing’, Nature, 2011, 472, pp. 9094.
    91. 91)
      • 56. Coon, K.D., Myers, A.J., Craig, D.W., et al: ‘A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset alzheimer's disease’, J. Clin. Psychiatry, 2007, 68, pp. 613618.
    92. 92)
      • 88. Vallejos, C.S., Gómez, H.L., Cruz, W.R., et al: ‘Breast cancer classification according to immunohistochemistry markers: subtypes and association with clinicopathologic variables in a peruvian hospital database’, Clin. Breast Cancer, 2010, 10, (4), pp. 294300.
    93. 93)
      • 68. Gerhardus, A., Schleberger, H., Schlegelberger, B., et al: ‘Diagnostic accuracy of methods for the detection of brca1 and brca2 mutations: a systematic review’, Eur. J. Hum. Genet., 2007, 15, (6), pp. 619627.
    94. 94)
      • 86. Isakoff, S.J.: ‘Triple negative breast cancer: role of specific chemotherapy agents’, Cancers J. (Sudbury, Mass.), 2010, 16, (1), p. 53.
    95. 95)
      • 44. Sparks, A.B., Wang, E.T., Struble, C.A., et al: ‘Selective analysis of cell-free dna in maternal blood for evaluation of fetal trisomy’, Prenat. Diagn., 2012, 32, (1), pp. 39.
    96. 96)
      • 22. Shen, L., Ahuja, N., Shen, Y., et al: ‘Dna methylation and environmental exposures in human hepatocellular carcinoma’, J. Natl. Cancer Inst., 2002, 94, (10), pp. 755761.
    97. 97)
      • 11. Wang, Z., Gerstein, M., Snyder, M.: ‘Rna-seq: a revolutionary tool for transcriptomics’, Nat. Rev. Genet., 2009, 10, (1), pp. 5763.
    98. 98)
      • 55. Liu, C.-C., Kanekiyo, T., Xu, H., et al: ‘Apolipoprotein e and alzheimer disease: risk, mechanisms and therapy’, Nat. Rev. Neurol., 2013, 9, (2), pp. 106118.
    99. 99)
      • 41. Chiu, R.W., Chan, K.A., Gao, Y., et al: ‘Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of dna in maternal plasma’, Proc. Natl. Acad. Sci., 2008, 105, (51), pp. 2045820463.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2016.0016
Loading

Related content

content/journals/10.1049/iet-syb.2016.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address