Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Minimum steering node set of complex networks and its applications to biomolecular networks

Many systems of interests in practices can be represented as complex networks. For biological systems, biomolecules do not perform their functions alone but interact with each other to form so-called biomolecular networks. A system is said to be controllable if it can be steered from any initial state to any other final state in finite time. The network controllability has become essential to study the dynamics of the networks and understand the importance of individual nodes in the networks. Some interesting biological phenomena have been discovered in terms of the structural controllability of biomolecular networks. Most of current studies investigate the structural controllability of networks in notion of the minimum driver node sets (MDSs). In this study, the authors analyse the network structural controllability in notion of the minimum steering node sets (MSSs). They first develop a graph-theoretic algorithm to identify the MSS for a given network and then apply it to several biomolecular networks. Application results show that biomolecules identified in the MSSs play essential roles in corresponding biological processes. Furthermore, the application results indicate that the MSSs can reflect the network dynamics and node importance in controlling the networks better than the MDSs.

References

    1. 1)
    2. 2)
      • 34. Goodrich, M.T., Tamassia, R.: ‘Algorithm design: foundation, analysis and internet examples’ (1em plus 0.5em minus 0.4em, John Wiley & Sons, 2006).
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 29. Yin, H., Zhang, S.: ‘Minimum structural controllability problems of complex networks’, Phys. A, Stat. Mech. Appl., 2015, 43, pp. 467476.
    9. 9)
      • 10. Rosenbrock, H.H.: ‘State-space and multivariable theory’, 1970.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 14. Shields, R., Pearson, J.: ‘Structural controllability of multiinput linear systems’, IEEE Trans. Autom. Control, 1976, AC-21, (2), pp. 201208.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 13. Lin, C.: ‘Structural controllability’, IEEE Trans. Autom. Control, 1974, AC-19, (3), pp. 201208.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 6. Kim, J., Park, S.M., Cho, K.H.: ‘Discovery of a kernel for controlling biomolecular regulatory networks’, Sci. Rep., 2013, 3, p. 2223.
    24. 24)
      • 28. Olshevsky, A.: ‘Minimum input selection for structural controllability’, arXiv preprint arXiv:1407.2884, 2014, pp. 22182223.
    25. 25)
    26. 26)
      • 36. Li, F., Long, T., Lu, Y., et al: ‘The yeast cell-cycle network is robustly designed’. Proc. of the National Academy of Sciences of the United States of America, 2004, vol. 101, no. 14, pp. 47814786.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 19. Wu, L., Shen, Y., Li, M., et al: ‘Drug target identification based on structural output controllability of complex networks’, Bioinf. Res. Appl., 1em plus 0.5em minus 0.4em Springer, 2014, pp. 188199.
    41. 41)
      • 18. Wu, F.-X., Wu, L., Wang, J., et al: ‘Transittability of complex networks and its applications to regulatory biomolecular networks’, Sci. Rep., 2014, 4, pp. 4819.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0077
Loading

Related content

content/journals/10.1049/iet-syb.2015.0077
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address