Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Non-linear feedback control of the p53 protein–mdm2 inhibitor system using the derivative-free non-linear Kalman filter

It is proven that the model of the p53–mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53–mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53–mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53–mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

References

    1. 1)
      • 16. Peirce, S.K., Findley, H.W.: ‘Targetting the MDM2–p53 interaction as a therapeutic strategy for the treatment of cancer, cell health and cytoskeleton’ (Dove Medical Press, 2010), vol. 2, pp. 4958.
    2. 2)
      • 23. Sira-Ramirez, H., Agrawal, S.: ‘Differentially flat systems’ (Marcel Dekker, New York, 2004).
    3. 3)
    4. 4)
      • 11. Elias, J., Dimitrio, L., Clairambault, J., et al: ‘The p53 protein and its molecular network: modelling a missing link between DNA damage and cell fate’, Biochim. Biophys. Acta, Proteins Proteomics, 2013.
    5. 5)
      • 39. Rigatos, G.: ‘Modelling and control for intelligent industrial systems: adaptive algorithms in robotics and industrial engineering’ (Springer, 2011).
    6. 6)
      • 36. Chuang, C.H., Lin, C.L.: ‘Estimation of noisy gene regulatory networks’. SICE Annual Conf., Taipei, Taiwan, August 2010.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 25. Fliess, M., Mounier, H.: ‘Tracking control and πat-freeness of infinite dimensional linear systems’. In: Picci, G., Gilliam, D.S., (Eds.), ‘Dynamical systems, control, coding and computer vision’ (Birkhaüser, 1999), vol. 258, pp. 4168.
    11. 11)
      • 21. Rigatos, G., Rigatou, E., Kalman, A.: ‘Filtering approach to robust synchronization of coupled neural oscillators’. ICNAAM 2013, 11th Int. Conf. of Numerical Analysis and Applied Mathematics, Rhodes, Greece, September 2013.
    12. 12)
    13. 13)
    14. 14)
      • 10. Yang, Y., Lin, H.: ‘p53–mdm2 core regulation revealed by a mathematical model’. 2008 IEEE Int. Conf. on Systems, Man and Cybernetics, Singapore, October 2008.
    15. 15)
    16. 16)
    17. 17)
      • 12. Xin, J.F., Jia, Y.: ‘A mathematical model of a P53 oscillation network triggered by DNA damage’, Chin. Phys., 2010, 19, (4).
    18. 18)
      • 6. Qi, J., Shao, S., Shen, Y., et al: ‘Cellular responding DNA damage: a predictive model of P53 gene regulatory networks under continuous ion radiation’. Proc. of 27th Chinese Control Conf., Kunming Yunnan, China, July 2008.
    19. 19)
    20. 20)
      • 24. Lévine, J.: ‘On necessary and sufficient conditions for differential flatness, applicable algebra in engineering, communications and computing’ (Springer, 2011), vol. 22, no. 1, pp. 4790.
    21. 21)
      • 5. Lillacci, G., Boccadoro, M., Valigi, P.: ‘The p53 network and its control via MDM2 inhibitors: insights from a dynamical model’. Proc. of 45th IEEE Conf. on Decision and Control, San Diego, California, USA, December 2006.
    22. 22)
    23. 23)
      • 37. Lillacci, G., Khammash, M.: ‘Parameter identification of biological networks using extended Kalman filtering and χ2 criteria’. 49th IEEE Conf. on Decision and Control Atlanta, Georgia, USA, December 2010.
    24. 24)
      • 27. Martin, Ph., Rouchon, P., Systèmes plats: ‘planification et suivi des trajectoires’, Journées X-UPS, 1999.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 42. Bassevile, M., Nikiforov, I.: ‘Detection of abrupt changes: theory and applications’ (Prentice-Hall, 1993).
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 13. Geva-Zatansky, N., Gekel, E., Batchelor, E., et al: ‘Fourier analysis and systems identification of the p53 feedback loop’, Proc. Natl. Acad. Sci., 2010, doi: 10.1073.
    35. 35)
    36. 36)
    37. 37)
      • 47. Rigatos, G.: ‘Nonlinear control and filtering using differential flatness approaches: applications to electromechanical systems’ (Springer, 2015).
    38. 38)
      • 41. Rigatos, G.G., Tzafestas, S.G.: ‘Extended Kalman filtering for fuzzy modelling and multi-sensor fusion, mathematical and computer modelling of dynamical systems’ (Taylor & Francis, 2007), vol. 13, pp. 251266.
    39. 39)
      • 22. Rudolph, J.: ‘Flatness based control of distributed parameter systems, Steuerungs- und Regelungstechnik’ (Shaker Verlag, Aachen, 2003).
    40. 40)
    41. 41)
    42. 42)
      • 46. Celani, F., Isidori, A.: ‘Output stabilization of strongly minimum-phase systems, NOLCOS 2010’. 8th IFAC Symp. on Nonlinear Control Systems, 2010, pp. 647652.
    43. 43)
    44. 44)
      • 29. Laroche, B., Martin, P., Petit, N.: ‘Commande par platitude: equations différentielles ordinaires et aux derivées partielles’ (Ecole Nationale Supérieure des Techniques Avancées, Paris, 2007).
    45. 45)
      • 19. Rigatos, G.: ‘Advanced models of neural networks: nonlinear dynamics and stochasticity in biological neurons’ (Springer, 2013).
    46. 46)
      • 14. Abou-Jaoudé, W., Chavés, Ì., Gouzé, J.L.: ‘A theoretical exploration of birhythmicity in the p53–mdm2 network’. INRIA Research Report No 7406, October 2010.
    47. 47)
      • 7. Qi, J.P., Shao, S.H., Xie, J., et al: ‘A mathematical model of P53 gene regulatory networks under radiotherapy’, 2007, 90, (3), pp. 698706.
    48. 48)
      • 30. Xiong, J., Zhou, T.: ‘Parameter Identification for nonlinear state-space models of a biological network via linearization and robust state estimation’. Proc. of the 32nd Chinese Control Conf., Xi'an, China, 2013, pp. 82358240.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0058
Loading

Related content

content/journals/10.1049/iet-syb.2015.0058
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address