http://iet.metastore.ingenta.com
1887

Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks

Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Parameter estimation for high dimension complex dynamic system is a hot topic. However, the current statistical model and inference approach is known as a large p small n problem. How to reduce the dimension of the dynamic model and improve the accuracy of estimation is more important. To address this question, the authors take some known parameters and structure of system as priori knowledge and incorporate it into dynamic model. At the same time, they decompose the whole dynamic model into subset network modules, based on different modules, and then they apply different estimation approaches. This technique is called Rao-Blackwellised particle filters decomposition methods. To evaluate the performance of this method, the authors apply it to synthetic data generated from repressilator model and experimental data of the JAK-STAT pathway, but this method can be easily extended to large-scale cases.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • M.L. Matthews , C. Williams . (2012)
        8. Matthews, M.L., Williams, C.: ‘Region of attraction estimation of biological continuous Boolean models’, in (Eds.): ‘Book region of attraction estimation of biological continuous Boolean models’ (IEEE, 2012), pp. 17001705.
        .
    9. 9)
      • O. Radulescu , A.N. Gorban , A. Zinovyev , V. Noel .
        9. Radulescu, O., Gorban, A.N., Zinovyev, A., Noel, V.: ‘Reduction of dynamical biochemical reaction networks in computational biology’, arXiv preprint arXiv:1205.2851, 2012.
        .
    10. 10)
    11. 11)
    12. 12)
      • O. Radulescu , A.N. Gorban , S. Vakulenko , A. Zinovyev .
        12. Radulescu, O., Gorban, A.N., Vakulenko, S., Zinovyev, A.: ‘Hierarchies and modules in complex biological systems’. Proc. ECCS'06, 2006.
        . Proc. ECCS'06
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • C.J. Dsilva , R. Talmon , C.W. Gear , R.R. Coifman , I.G. Kevrekidis .
        16. Dsilva, C.J., Talmon, R., Gear, C.W., Coifman, R.R., Kevrekidis, I.G.: ‘Data-driven reduction for multiscale stochastic dynamical systems’, arXiv preprint arXiv:1501.05195, 2015.
        .
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • T. Schön , F. Gustafsson .
        23. Schön, T., Gustafsson, F.: ‘Particle filters for system identification of state-space models linear in either parameters or states’, 2003.
        .
    24. 24)
      • P. Li , R. Goodall , V. Kadirkamanathan . (2003)
        24. Li, P., Goodall, R., Kadirkamanathan, V.: ‘Parameter estimation of railway vehicle dynamic model using Rao-Blackwellised particle filter’, in (Eds.): ‘Book parameter estimation of railway vehicle dynamic model using Rao-Blackwellised particle filter’ (2003).
        .
    25. 25)
      • M.J. Daly , J.P. Reilly , M.R. Morelande . (2005)
        25. Daly, M.J., Reilly, J.P., Morelande, M.R.: ‘Rao-Blackwellised particle filtering for blind system identification’, in (Eds.): ‘Book Rao-Blackwellised particle filtering for blind system identification’ (IEEE, 2005), vol. 324, pp. iv/321iv/324.
        .
    26. 26)
      • R. Karlsson , T. Schön , F. Gustafsson .
        26. Karlsson, R., Schön, T., Gustafsson, F.: ‘Complexity analysis of the marginalized particle filter’, 2004.
        .
    27. 27)
      • T. Schön , R. Karlsson , F. Gustafsson .
        27. Schön, T., Karlsson, R., Gustafsson, F.: ‘The marginalized particle filter in practice’, 2005.
        .
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • J. Holst , U. Holst , H. Madsen , H. Melgaard . (2014)
        34. Holst, J., Holst, U., Madsen, H., Melgaard, H.: ‘Validation of grey box models’, in (Eds.): ‘Book validation of grey box models’ (Elsevier, 2014), p. 53.
        .
    35. 35)
    36. 36)
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0034
Loading

Related content

content/journals/10.1049/iet-syb.2015.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address