http://iet.metastore.ingenta.com
1887

In silico discovery of significant pathways in colorectal cancer metastasis using a two-stage optimisation approach

In silico discovery of significant pathways in colorectal cancer metastasis using a two-stage optimisation approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Accurate and reliable modelling of protein–protein interaction networks for complex diseases such as colorectal cancer can help better understand mechanism of diseases and potentially discover new drugs. Different machine learning methods such as empirical mode decomposition combined with least square support vector machine, and discrete Fourier transform have been widely utilised as a classifier and for automatic discovery of biomarkers for the diagnosis of the disease. The existing methods are, however, less efficient as they tend to ignore interaction with the classifier. In this study, the authors propose a two-stage optimisation approach to effectively select biomarkers and discover interactions among them. At the first stage, particle swarm optimisation (PSO) and differential evolution (DE) are used to optimise parameters of support vector machine recursive feature elimination algorithm, and dynamic Bayesian network is then used to predict temporal relationship between biomarkers across two time points. Results show that 18 and 25 biomarkers selected by PSO and DE-based approach, respectively, yields the same accuracy of 97.3% and F1-score of 97.7 and 97.6%, respectively. The stratified analysis reveals that Alpha-2-HS-glycoprotein was a dominant hub gene with multiple interactions to other genes including Fibrinogen alpha chain, which is also a potential biomarker for colorectal cancer.

References

    1. 1)
      • 1. ‘The National Health Service (NHS) UK, Department of Health, Bowel Cancer’. Available at http://www.nhs.uk/conditions/Cancer-of-the-colon-rectum-or-bowel/Pages/Introduction.aspx, accessed February 2015.
        .
    2. 2)
      • 2. ‘American Cancer Society, What is Colorectal Cancer’. Available at http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics, accessed February 2015.
        .
    3. 3)
    4. 4)
    5. 5)
      • Y. Hong , L. Zeng-li , H. Wei .
        5. Hong, Y., Zeng-li, L., Wei, H.: ‘Research for the colon cancer based on the EMD and LS-SVM’. Proc. of Int. Conf. on Intelligent Computation Technology and Automation (ICICTA), Shenzhen, Guangdong, March 2011, pp. 888891.
        . Proc. of Int. Conf. on Intelligent Computation Technology and Automation (ICICTA) , 888 - 891
    6. 6)
      • S. Rathore , M. Iftikhar , M. Hussain .
        6. Rathore, S., Iftikhar, M., Hussain, M.: ‘A novel approach for automatic gene selection and classification of gene based colon cancer datasets’. Proc. of Int. Conf. on Emerging Technologies (ICET), Islamabad, December 2014, pp. 4247.
        . Proc. of Int. Conf. on Emerging Technologies (ICET) , 42 - 47
    7. 7)
    8. 8)
    9. 9)
      • A. Akutekwe , H. Seker .
        9. Akutekwe, A., Seker, H.: ‘Particle swarm optimization-based bio-network discovery method for the diagnosis of colorectal cancer’. Proc. of Int. Conf. on IEEE Bioinformatics and Biomedicine (BIBM), Belfast, November 2014, pp. 813.
        . Proc. of Int. Conf. on IEEE Bioinformatics and Biomedicine (BIBM) , 8 - 13
    10. 10)
    11. 11)
      • C. Cortes , V. Vladimir .
        11. Cortes, C., Vladimir, V.: ‘Support-vector networks’, Mach. Learn., 1995, 20, (3), pp. 273297.
        . Mach. Learn. , 3 , 273 - 297
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • T. Rogalsky , R. Derksen , S. Kocabiyik .
        15. Rogalsky, T., Derksen, R., Kocabiyik, S.: ‘Differential evolution in aerodynamic optimization’, Can. Aeronaut. Space J., 2000, 46, (4), pp. 183190.
        . Can. Aeronaut. Space J. , 4 , 183 - 190
    16. 16)
      • R. Storn .
        16. Storn, R.: ‘On the usage of differential evolution for function optimization’. Proc. of Int. Conf. on North American Fuzzy Information Processing, Berkeley, CA, 1996, pp. 519523.
        . Proc. of Int. Conf. on North American Fuzzy Information Processing , 519 - 523
    17. 17)
    18. 18)
      • J. Kennedy , R. Eberhart .
        18. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. of Int. Conf. on IEEE Neural Networks, Piscataway, NJ, 1995, pp. 19421948.
        . Proc. of Int. Conf. on IEEE Neural Networks , 1942 - 1948
    19. 19)
      • A. Engelbrecht . (2007)
        19. Engelbrecht, A.: ‘Computational intelligence: an introduction’ (John Willey & Sons, 2007).
        .
    20. 20)
    21. 21)
    22. 22)
      • Y. Shi , R. Eberhart .
        22. Shi, Y., Eberhart, R.: ‘A modified particle swarm optimizer’. Proc. of Int. Conf. on IEEE World Congress on Computational Intelligence, Anchorage, AK, May 1998, pp. 6973.
        . Proc. of Int. Conf. on IEEE World Congress on Computational Intelligence , 69 - 73
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • S. Russell , P. Norvig . (2010)
        28. Russell, S., Norvig, P.: ‘Artificial intelligence: a modern approach’ (Prentice Hall, 2010).
        .
    29. 29)
      • K. Korb , A. Nicholson . (2011)
        29. Korb, K., Nicholson, A.: ‘Bayesian artificial intelligence’ (CRC press, 2011).
        .
    30. 30)
      • K. Murphy . (2012)
        30. Murphy, K.: ‘Machine learning: a probabilistic perspective’ (MIT press, 2012).
        .
    31. 31)
      • Z. Liu , W. Zhang , K. Horimoto .
        31. Liu, Z., Zhang, W., Horimoto, K., et al: ‘Gaussian graphical model for identifying significantly responsive regulatory networks from time course high-throughput data’, Syst. Biol., 2013, 7, (5), pp. 143152.
        . Syst. Biol. , 5 , 143 - 152
    32. 32)
    33. 33)
      • R. Nagarajan , M. Scutari , S. Lèbre . (2013)
        33. Nagarajan, R., Scutari, M., Lèbre, S.: ‘Bayesian networks in R –with applications in systems biology’ (Springer, 2013).
        .
    34. 34)
      • R. Tibshirani .
        34. Tibshirani, R.: ‘Regression shrinkage and selection via the lasso’, J. R. Stat. Soc. Ser. B, Methodol., 1996, 58, (1), pp. 267288.
        . J. R. Stat. Soc. Ser. B, Methodol. , 1 , 267 - 288
    35. 35)
    36. 36)
      • 36. Swiss Institute of Bioinformatics SIB, Tagident Bioinformatics Resource Tool’. Available at http://web.expasy.org/tagident/, accessed June 2015.
        .
    37. 37)
      • 37. R Core Team ‘R: A language and environment for statistical computing’, R Foundation for Statistical Computing, Vienna, Austria, 2014. Available at http://www.R-project.org/.
        .
    38. 38)
      • C.X. Ling , H. Jin , Z. Harry . (2003)
        38. Ling, C.X., Jin, H., Harry, Z.: ‘AUC: a better measure than accuracy in comparing learning algorithms’, in Yang, X., Brahim, C. (Eds.): ‘Advances in artificial intelligence’ (Springer, 2003), vol. 2671, pp. 329341.
        .
    39. 39)
      • S. Lebre .
        39. Lebre, S.: original version 1.0 by Sophie Lebre and contribution of Julien Chiquet to version 2.0 (2013). G1DBN: a package performing dynamic Bayesian network inference. R package version 3.1.1. Available at http://CRAN.R-project.org/package=G1DBN.
        .
    40. 40)
      • A. Akutekwe , H. Seker .
        40. Akutekwe, A., Seker, H.: ‘Two-stage computational bio-network discovery approach for metabolites: ovarian cancer as a case study’. Proc. of Int. Conf. on Biomedical and Health Informatics (BHI), June 2014, pp. 97100.
        . Proc. of Int. Conf. on Biomedical and Health Informatics (BHI) , 97 - 100
    41. 41)
      • A. Akutekwe , H. Seker .
        41. Akutekwe, A., Seker, H.: ‘A hybrid dynamic Bayesian network approach for modelling temporal associations of gene expressions for hypertension diagnosis’. Proc. of Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Chicago, USA, August 2014, pp. 804807.
        . Proc. of Int. Conf. on Engineering in Medicine and Biology Society (EMBC) , 804 - 807
    42. 42)
      • S. Lebre .
        42. Lebre, S.: ‘Stochastic process analysis for genomics and dynamic Bayesian networks inference’. PhD thesis, Université d'Evry-Val d'Essonne, 2007.
        .
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • W.H. Cao , H.M. Liu , X. Liu .
        48. Cao, W.H., Liu, H.M., Liu, X., et al: ‘Relaxin enhances in-vitro invasiveness of breast cancer cell lines by upregulation of S100A4/MMPs signaling’, Eur. Rev. Med. Pharmacol. Sci., 2013, 17, (5), pp. 609617.
        . Eur. Rev. Med. Pharmacol. Sci. , 5 , 609 - 617
    49. 49)
    50. 50)
    51. 51)
    52. 52)
      • S. Rachel , S. Adam , R. David .
        52. Rachel, S., Adam, S., David, R.: ‘Pro-opiomelanocortin is a novel biomarker for small cell lung cancer’, Endocrine Abstr., 2010, 21, p. 221.
        . Endocrine Abstr. , 221
    53. 53)
    54. 54)
    55. 55)
    56. 56)
      • 56. The UniProt Consortium: ‘UniProt: a hub for protein information’, Nucleic Acids Research, 2015, gku989.
        .
    57. 57)
    58. 58)
    59. 59)
      • M.C. Paquin , C. Leblanc , E. Lemieux .
        59. Paquin, M.C., Leblanc, C., Lemieux, E., et al: ‘Functional impact of colorectal cancer-associated mutations in the transcription factor E2F4’, Int. J. Oncol., 2013, 43, (6), pp. 20152022.
        . Int. J. Oncol. , 6 , 2015 - 2022
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0031
Loading

Related content

content/journals/10.1049/iet-syb.2015.0031
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address