access icon free Computational approaches for understanding the diagnosis and treatment of Parkinson's disease

This study describes how the application of evolutionary algorithms (EAs) can be used to study motor function in humans with Parkinson's disease (PD) and in animal models of PD. Human data is obtained using commercially available sensors via a range of non-invasive procedures that follow conventional clinical practice. EAs can then be used to classify human data for a range of uses, including diagnosis and disease monitoring. New results are presented that demonstrate how EAs can also be used to classify fruit flies with and without genetic mutations that cause Parkinson's by using measurements of the proboscis extension reflex. The case is made for a computational approach that can be applied across human and animal studies of PD and lays the way for evaluation of existing and new drug therapies in a truly objective way.

Inspec keywords: sensors; diseases; genetic algorithms; patient treatment; patient monitoring; drugs; patient diagnosis; medical diagnostic computing

Other keywords: proboscis extension reflex; fruit flies; drug therapy; evolutionary algorithms; sensors; Parkinson disease treatment; computational approaches; human data classification; Parkinson disease diagnosis; noninvasive procedures; animal models; disease monitoring; genetic mutations; motor function

Subjects: Patient care and treatment; Optimisation techniques; Optimisation techniques; Patient care and treatment; Patient diagnostic methods and instrumentation; Biology and medical computing

References

    1. 1)
      • 50. Lones, M.A., Alty, J.E., Duggan-Carter, P., et al: ‘Classification and characterisation of movement patterns during levodopa therapy for Parkinson's disease’. Proc. of the 2014 Conf. Companion on Genetic and Evolutionary Computation Companion, 2014.
    2. 2)
    3. 3)
    4. 4)
      • 6. Rajput, A., Rozdilsky, B., Rajput, A.: ‘Accuracy of clinical diagnosis in Parkinsonism – a prospective study’, Can. J. Neurol. Sci.. Le J. Can. des Sci. Neurolog., 1991, 18, (3), pp. 275278.
    5. 5)
    6. 6)
      • 20. Wesnes, K.A., Burn, D.J.: ‘The prevalence and nature of mild cognitive impairment in Parkinson's disease (PD-MCI) identified using automated cognitive tests[abstract]. Mov. Disord., 2013, 28,(Suppl 1), p. 568.
    7. 7)
      • 28. Phillips, M., Roberts, S., Kladt, N., et al: ‘An automated, high-throughput climbing assay for behavioral screening in drosophila’, Front. Behav. Neurosci., p. 357.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 1. Parkinson's UK: ‘Parkinson's prevalence in the United Kingdom. 2009’ (Parkinson's UK, London, 2012), pp. 113.
    12. 12)
    13. 13)
      • 48. Miller, J.F.: ‘Cartesian genetic programming’ (Springer, 2011).
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 49. Lones, M., Smith, S.L., Harris, A.T., et al: ‘Discriminating normal and cancerous thyroid cell lines using implicit context representation cartesian genetic programming’. 2010 IEEE Congress on Evolutionary Computation (CEC), 2010.
    23. 23)
    24. 24)
      • 26. Barone, M.C., Bohmann, D.: ‘Assessing neurodegenerative phenotypes in drosophila dopaminergic neurons by climbing assays and whole brain immunostaining’, J Visualized Experiments: JoVE, 2013, (74).
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 41. Granato, M., Van Eeden, F., Schach, U., et al: ‘Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva’, Development, 1996, 123, (1), pp. 399413.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 37. Brand, A.H., Perrimon, N.: ‘Targeted gene expression as a means of altering cell fates and generating dominant phenotypes’, Development, 1993, 118, (2), pp. 401415.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 47. Chiong, R., Weise, T., Michalewicz, Z.: ‘Variants of evolutionary algorithms for real-world applications’ (Springer, 2012).
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
      • 44. Lei, Y., Guo, X., Liu, Y., et al: ‘Efficient targeted gene disruption in xenopus embryos using engineered transcription activator-like effector nucleases (Talens)’. Proc. of the National Academy of Sciences, 2012, p. 201215421.
    54. 54)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0030
Loading

Related content

content/journals/10.1049/iet-syb.2015.0030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading