access icon free Integrated dopaminergic neuronal model with reduced intracellular processes and inhibitory autoreceptors

Dopamine (DA) is an important neurotransmitter for multiple brain functions, and dysfunctions of the dopaminergic system are implicated in neurological and neuropsychiatric disorders. Although the dopaminergic system has been studied at multiple levels, an integrated and efficient computational model that bridges from molecular to neuronal circuit level is still lacking. In this study, the authors aim to develop a realistic yet efficient computational model of a dopaminergic pre-synaptic terminal. They first systematically perturb the variables/substrates of an established computational model of DA synthesis, release and uptake, and based on their relative dynamical timescales and steady-state changes, approximate and reduce the model into two versions: one for simulating hourly timescale, and another for millisecond timescale. They show that the original and reduced models exhibit rather similar steady and perturbed states, whereas the reduced models are more computationally efficient and illuminate the underlying key mechanisms. They then incorporate the reduced fast model into a spiking neuronal model that can realistically simulate the spiking behaviour of dopaminergic neurons. In addition, they successfully include autoreceptor-mediated inhibitory current explicitly in the neuronal model. This integrated computational model provides the first step toward an efficient computational platform for realistic multiscale simulation of dopaminergic systems in in silico neuropharmacology.

Inspec keywords: organic compounds; neurophysiology; medical disorders; brain

Other keywords: multiple brain functions; reduced fast model; integrated dopaminergic neuronal model; spiking neuronal model; steady perturbed states; autoreceptor-mediated inhibitory current; relative dynamical timescales; integrated computational model; in silico neuropharmacology; neurological disorders; neuropsychiatric disorders; reduced intracellular processes; inhibitory autoreceptors; dopaminergic presynaptic terminal; realistic multiscale simulation; neuronal-circuit level; molecular level; neurotransmitter; dysfunctions; computational model; efficient computational platform

Subjects: Biomedical engineering; Biophysics of neurophysiological processes; Biomedical measurement and imaging

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 32. Lo, B., Field, M.J.: ‘Conflict of interest in medical research education and practice’ (National Academy Press, Washington DC, 2009).
    8. 8)
      • 1. Missale, C., Nash, S.R., Robinson, , et al: ‘Dopamine receptors: from structure to function’, Physiol. Rev., 1998, 78, pp. 189225.
    9. 9)
    10. 10)
      • 42. Benoit-Marand, M., Borrelli, E., Gonon, F.: ‘Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo’, J. Neurosci., 2001, 21, (23), pp. 91349141.
    11. 11)
    12. 12)
    13. 13)
      • 50. Joshi, A., Wong-Lin, K., McGinnity, T.M., et al: ‘A mathematical model to explore the interdependence between the serotonin and orexin/hypocretin systems’. Proc. IEEE Engineering in Medicine and Biology Society Conf., 2011, pp. 72707273.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 37. Grace, A.A., Bunney, B.S.: ‘The control of firing pattern in nigral dopamine neurons: burst firing’, J. Neurosci., 1983, 4, pp. 28772890.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 4. Baldessarini, R.J., Tarazi, F.I.: ‘Drugs and the treatment of psychiatric disorders’, in Hardman, J.G., Limbird, L.E. (EDs.): ‘The pharmacologic basis of therapeutics’ (McGraw-Hill, New York, 2001), pp. 485520.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 45. Einhorn, L.C., Johansen, P.A., White, F.J.: ‘Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area’, J. Neurosci., 1988, 8, (1), pp. 100112.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • 18. Sharpe, A.L., Varela, E., Bettinger, L., et al: ‘Methamphetamine self-administration in mice decreases GIRK channel-mediated currents in midbrain dopamine neurons’, Int. J. Neuropsychopharmacol., 2014, pii: pyu073, doi: 10.1093.ijnp/pyu073.
    50. 50)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0018
Loading

Related content

content/journals/10.1049/iet-syb.2015.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading