http://iet.metastore.ingenta.com
1887

Integrated dopaminergic neuronal model with reduced intracellular processes and inhibitory autoreceptors

Integrated dopaminergic neuronal model with reduced intracellular processes and inhibitory autoreceptors

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Dopamine (DA) is an important neurotransmitter for multiple brain functions, and dysfunctions of the dopaminergic system are implicated in neurological and neuropsychiatric disorders. Although the dopaminergic system has been studied at multiple levels, an integrated and efficient computational model that bridges from molecular to neuronal circuit level is still lacking. In this study, the authors aim to develop a realistic yet efficient computational model of a dopaminergic pre-synaptic terminal. They first systematically perturb the variables/substrates of an established computational model of DA synthesis, release and uptake, and based on their relative dynamical timescales and steady-state changes, approximate and reduce the model into two versions: one for simulating hourly timescale, and another for millisecond timescale. They show that the original and reduced models exhibit rather similar steady and perturbed states, whereas the reduced models are more computationally efficient and illuminate the underlying key mechanisms. They then incorporate the reduced fast model into a spiking neuronal model that can realistically simulate the spiking behaviour of dopaminergic neurons. In addition, they successfully include autoreceptor-mediated inhibitory current explicitly in the neuronal model. This integrated computational model provides the first step toward an efficient computational platform for realistic multiscale simulation of dopaminergic systems in in silico neuropharmacology.

References

    1. 1)
      • C. Missale , S.R. Nash , Robinson .
        1. Missale, C., Nash, S.R., Robinson, , et al: ‘Dopamine receptors: from structure to function’, Physiol. Rev., 1998, 78, pp. 189225.
        . Physiol. Rev. , 189 - 225
    2. 2)
    3. 3)
      • R.J. Baldessarini , F.I. Tarazi . (2001)
        4. Baldessarini, R.J., Tarazi, F.I.: ‘Drugs and the treatment of psychiatric disorders’, in Hardman, J.G., Limbird, L.E. (EDs.): ‘The pharmacologic basis of therapeutics’ (McGraw-Hill, New York, 2001), pp. 485520.
        .
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • A.L. Sharpe , E. Varela , L. Bettinger .
        18. Sharpe, A.L., Varela, E., Bettinger, L., et al: ‘Methamphetamine self-administration in mice decreases GIRK channel-mediated currents in midbrain dopamine neurons’, Int. J. Neuropsychopharmacol., 2014, pii: pyu073, doi: 10.1093.ijnp/pyu073.
        . Int. J. Neuropsychopharmacol.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • B. Lo , M.J. Field . (2009)
        32. Lo, B., Field, M.J.: ‘Conflict of interest in medical research education and practice’ (National Academy Press, Washington DC, 2009).
        .
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • A.A. Grace , B.S. Bunney .
        37. Grace, A.A., Bunney, B.S.: ‘The control of firing pattern in nigral dopamine neurons: burst firing’, J. Neurosci., 1983, 4, pp. 28772890.
        . J. Neurosci. , 2877 - 2890
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
      • M. Benoit-Marand , E. Borrelli , F. Gonon .
        42. Benoit-Marand, M., Borrelli, E., Gonon, F.: ‘Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo’, J. Neurosci., 2001, 21, (23), pp. 91349141.
        . J. Neurosci. , 23 , 9134 - 9141
    42. 42)
    43. 43)
    44. 44)
      • L.C. Einhorn , P.A. Johansen , F.J. White .
        45. Einhorn, L.C., Johansen, P.A., White, F.J.: ‘Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area’, J. Neurosci., 1988, 8, (1), pp. 100112.
        . J. Neurosci. , 1 , 100 - 112
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • A. Joshi , K. Wong-Lin , T.M. McGinnity .
        50. Joshi, A., Wong-Lin, K., McGinnity, T.M., et al: ‘A mathematical model to explore the interdependence between the serotonin and orexin/hypocretin systems’. Proc. IEEE Engineering in Medicine and Biology Society Conf., 2011, pp. 72707273.
        . Proc. IEEE Engineering in Medicine and Biology Society Conf. , 7270 - 7273
    50. 50)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2015.0018
Loading

Related content

content/journals/10.1049/iet-syb.2015.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address