Design of synthetic biological logic circuits based on evolutionary algorithm

Design of synthetic biological logic circuits based on evolutionary algorithm

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.


    1. 1)
      • 1. Hasty, J., McMillen, D., Collins, J.J.: ‘Engineered gene circuits’, Nature, 2002, 420, pp. 224230 (doi: 10.1038/nature01257).
    2. 2)
      • 2. Dasika, M.S., Maranas, C.D.: ‘OptCircuit: an optimization based method for computational design of genetic circuits’, BMC Syst. Biol., 2008, 2, (24), pp. 119.
    3. 3)
      • 3. Holland, J.H.: ‘Adaptation in natural and artificial systems’ (MIT Press, Cambridge, MA, 1975).
    4. 4)
      • 4. Goldberg, D.E.: ‘Real-code genetic algorithms, virtual alphabets and blocking’, Compl. Syst., 1991, 5, pp. 13916.
    5. 5)
      • 5. Dasgupta, D., McGregor, D.R.: ‘A structured genetic algorithm: the model and the first result’. Rep. IKBS-2–91, Strathclyde University, 1991.
    6. 6)
      • 6. Lai, C.C., Chang, C.Y.: ‘A hierarchical genetic algorithm based approach for image segmentation’. Proc. IEEE Int. Conf. Networking, Sensing and Control, Taipei, 2004, pp. 12841288.
    7. 7)
      • 7. Tsai, C.W., Huang, C.H., Lin, C.L.: ‘Structure-specified IIR filter and control design using real structured genetic algorithm’, Appl. Soft Comput., 2009, 9, pp. 12851295 (doi: 10.1016/j.asoc.2009.04.001).
    8. 8)
      • 8. Tsai, C.W., Lin, C.L., Huang, C.H.: ‘Microbrushless DC motor control design based on real coded structural genetic algorithm’, IEEE/ASME Trans. Mech., 2011, 16, pp. 151159 (doi: 10.1109/TMECH.2009.2037620).
    9. 9)
      • 9. Wang, B., Kitney, R.I., Joly, N., Buck, B.: ‘Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology’, Nat. Commun., 2011, 2, (508), pp. 19.
    10. 10)
      • 10. Anderson, J.C., Voigt, C.A., Arkin, A.P.: ‘Environmental signal integration by a modular AND gate’, Mol. Syst. Biol., 2007, 3, (133), pp. 18.
    11. 11)
      • 11. Privman, V., Zhou, J., Halámek, J., Katz, E.: ‘Realization and properties of biochemical-computing biocatalytic XOR gate based on signal change’, J. Phys. Chem. B, 2010, 114, (42), pp. 1360113608 (doi: 10.1021/jp107562p).
    12. 12)
      • 12. Halámek, J., Bocharova, V., Arugula, M.A., Strack, G., Privman, V., Katz, E.: ‘Realization and properties of biochemical-computing biocatalytic XOR gate based on enzyme inhibition by a substrate’, J. Phys. Chem. B, 2011, 115, (32), pp. 98389845 (doi: 10.1021/jp2041372).
    13. 13)
      • 13. Vladimir, P.: ‘Error-control and digitalization concepts for chemical and biomolecular information processing systems’, J. Comput. Theor. Nanosci., 2011, 8, (3), pp. 490502 (doi: 10.1166/jctn.2011.1714).
    14. 14)
      • 14. Lauria, M., Bhalerao, K., Pugalanthiran, M.M., Yuan, B.: ‘Building blocks of a biochemical CPU based on DNA transcription logic’. Workshop on Nonsilicon Computing, Munich, 2004.
    15. 15)
      • 15. Marchisio, M.A., Stelling, J.: ‘Automatic design of digital synthetic gene circuits’, PLoS Comput. Biol., 2011, 7, (2), pp. 113 (doi: 10.1371/journal.pcbi.1001083).
    16. 16)
      • 16. Sayut, D.J., Niu, Y., Sun, L.H.: ‘Construction and enhancement of a minimal genetic AND logic gate’, Appl. Environ. Microbiol., 2009, 75, (3), pp. 637642 (doi: 10.1128/AEM.01684-08).
    17. 17)
      • 17. Buchler, N.E., Gerland, U., Hwa, T.: ‘On schemes of combinatorial transcription logic’, Proc. Nat. Acad. Sci. USA, 2003, 100, (9), pp. 51365141 (doi: 10.1073/pnas.0930314100).
    18. 18)
      • 18. Tamsir, A., Tabor, J.J., Voigt, C.A.: ‘Robust multicellular computing using genetically encoded NOR gates and chemical wires’, Nature, 2011, 469, (7329), pp. 212215 (doi: 10.1038/nature09565).
    19. 19)
      • 19. Bintu, L., Buchler, N.E., Garcia, H.G., et al: ‘Transcriptional regulation by the numbers: models’, Curr. Opin. Genet. Dev., 2005, 15, (2), pp. 116124 (doi: 10.1016/j.gde.2005.02.007).
    20. 20)
      • 20. Kaplan, B., Bren, A., Dekel, E., Alon, U.: ‘The incoherent feed-forward loop can generate non-monotonic input functions for genes’, Mol. Syst. Biol., 2008, 4, (203), pp. 19.
    21. 21)
      • 21. Mayo, A.E., Setty, Y., Shavit, S., Zaslaver, A., Alon, U.: ‘Plasticity of the cis-regulatory input function of a gene’, PLoS Biol., 2006, 4, (4), pp. 555561 (doi: 10.1371/journal.pbio.0040045).
    22. 22)
      • 22. Setty, Y., Mayo, A.E., Surette, M.G., Alon, U.: ‘Detailed map of a cis-regulatory input function’, Proc. Nat. Acad. Sci. USA, 2003, 100, (13), pp. 77027707 (doi: 10.1073/pnas.1230759100).
    23. 23)
      • 23. Kinkhabwala, A., Guet, C.C.: ‘Uncovering cis-regulatory codes using synthetic promoter shuffling’, PLoS ONE, 2008, 3, (4), pp. 110 (doi: 10.1371/journal.pone.0002030).
    24. 24)
      • 24. Zhang, J., Yuan, Z., Zhou, T.: ‘Combinatorial regulation: characteristics of dynamic correlations’, IET Syst. Biol., 2009, 3, (6), pp. 440452 (doi: 10.1049/iet-syb.2009.0004).
    25. 25)
      • 25. Chen, A.M., Zhou, T.S.: ‘Sensitivity analysis of a cis-regulatory input function’. Proc. Int. Symp. Optimization and Systems Biology, Lijiang, 2008, pp. 325332.
    26. 26)
      • 26. Bintu, L., Buchler, N.E., Garcia, H.G., et al: ‘Transcriptional regulation by the numbers: applications’, Curr. Opin. Genet. Dev., 2005, 15, (2), pp. 125135 (doi: 10.1016/j.gde.2005.02.006).

Related content

This is a required field
Please enter a valid email address