http://iet.metastore.ingenta.com
1887

Computing enclosures for uncertain biochemical systems

Computing enclosures for uncertain biochemical systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors present a novel method that provides enclosures for state trajectories of a non-linear dynamical system with uncertainties in initial conditions and parameter values. It is based on solving positivity conditions by means of semi-definite programmes and sum of squares decompositions. The method accounts for the indeterminacy of kinetic parameters, measurement uncertainties and fluctuations in the reaction rates because of extrinsic noise. This is particularly useful in the field of systems biology when one seeks to determine model behaviour quantitatively or, if this is not possible, semi-quantitatively. The authors also demonstrate the significance of the proposed method to model selection in biology. The authors illustrate the applicability of their method on the mitogen-activated protein kinase signalling pathway, which is an important and reoccurring network motif that apparently also plays a crucial role in the development of cancer.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • Prajna, S., Jadbabaie, A., Pappas, G.J.: `Stochastic safety verification using barrier certificates', Proc. 2004 Conf. on Decision and Control, 2004, p. 929–934.
    9. 9)
    10. 10)
      • Tobenkin, M.M., Manchester, I.R., Tedrake, R.: `Invariant funnels around trajectories using sum-of-squares programming', Preprints of the 18th IFAC World Congress, 2011, Milano, Italy, p. 9218–9223.
    11. 11)
    12. 12)
      • K. Makino , M. Berz . Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. , 4 , 379 - 456
    13. 13)
      • Nedialkov, N.S.: `Interval tools for ODEs and DAEs', 12thGAMM-IMACS Int. Symp. on Scientific Computing, Computer Arithmetic and Validated Numerics, 2006, p. 4.
    14. 14)
      • Y. Lin , M.A. Stadtherr , W. Marquardt , C. Pantelides . (2006) Validated solution of ODEs with parametric uncertainties, Computer aided chemical engineering.
    15. 15)
    16. 16)
      • Makino, K., Berz, M.: `Rigorous integration of flows and ODEs using Taylor models', Proc. 2009 Conf. Symbolic Numeric Computation, 2009, Kyoto, Japan, p. 79–84.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • Filippova, T.F.: `Differential equations for ellipsoidal estimates for reachable sets of a nonlinear dynamical control system', Proc. Steklov Institute of Mathematics, 2010, 3, p. S75–S84.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • S. Boyd , L. Vandenberghe . (2004) Convex optimization.
    29. 29)
    30. 30)
    31. 31)
      • Papachristodoulou, A., Prajna, S.: `A Tutorial on sum of squares techniques for systems analysis', Proc. 2005 American Control Conf., 2005, Portland, OR, USA, p. 2686–2700.
    32. 32)
      • S. Prajna , A. Papachristodoulou , P.A. Parrilo . (2002) SOSTOOLS – sum of squares optimization toolbox, user's guide.
    33. 33)
      • R. Heinrich , S. Schuster . (1996) The regulation of cellular systems.
    34. 34)
      • E. Hairer , S.P. Nørsett , G. Wanner . (1993) Solving ordinary differential equations I: nonstiff problems.
    35. 35)
      • J.-P. Aubin , A. Cellina . (1984) Differential inclusions, set-valued maps and viability theory.
    36. 36)
      • J.D. Murray . (1993) Mathematical biology.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • A. Rauh , E. Auer . Verified Simulation of ODEs and DAEs in ValEncIA-IVP. Reliab. Comput. , 4 , 370 - 381
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2011.0091
Loading

Related content

content/journals/10.1049/iet-syb.2011.0091
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address