http://iet.metastore.ingenta.com
1887

Systems analysis utilising pathway interactions identifies sonic hedgehog pathway as a primary biomarker and oncogenic target in hepatocellular carcinoma

Systems analysis utilising pathway interactions identifies sonic hedgehog pathway as a primary biomarker and oncogenic target in hepatocellular carcinoma

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The development and progression of cancer is associated with disruption of biological networks. Historically studies have identified sets of signature genes involved in events ultimately leading to the development of cancer. Identification of such sets does not indicate which biologic processes are oncogenic drivers and makes it difficult to identify key networks to target for interventions. Using a comprehensive, integrated computational approach, the authors identify the sonic hedgehog (SHH) pathway as the gene network that most significantly distinguishes tumour and tumour-adjacent samples in human hepatocellular carcinoma (HCC). The analysis reveals that the SHH pathway is commonly activated in the tumour samples and its activity most significantly differentiates tumour from the non-tumour samples. The authors experimentally validate these in silico findings in the same biologic material using Western blot analysis. This analysis reveals that the expression levels of SHH, phosphorylated cyclin B1, and CDK7 levels are much higher in most tumour tissues as compared to normal tissue. It is also shown that siRNA-mediated silencing of SHH gene expression resulted in a significant reduction of cell proliferation in a liver cancer cell line, SNU449 indicating that SHH plays a major role in promoting cell proliferation in liver cancer. The SHH pathway is a key network underpinning HCC aetiology which may guide the development of interventions for this most common form of human liver cancer.

References

    1. 1)
      • D.K. Espey , X.C. Wu , J. Swan .
        1. Espey, D.K., Wu, X.C., Swan, J., et al: ‘Annual report to the nation on the status of cancer, 1975–2004, featuring cancer in American Indians and Alaska Natives’, Cancer, 2007, 110, pp. 21192152 (doi: 10.1002/cncr.23044).
        . Cancer , 2119 - 2152
    2. 2)
      • M.C. Yu , J.M. Yuan .
        2. Yu, M.C., Yuan, J.M.: ‘Environmental factors and risk for hepatocellular carcinoma’, Gastroenterology, 2004, 127, pp. S7278 (doi: 10.1016/j.gastro.2004.09.018).
        . Gastroenterology , S72 - 78
    3. 3)
      • A. Villanueva , P. Newell , D. Chiang , S. Friedman , J. Llovet .
        3. Villanueva, A., Newell, P., Chiang, D., Friedman, S., Llovet, J.: ‘Genomics and signaling pathways in hepatocellular carcinoma’, Semin. Liver Dis., 2007, 27, (1), pp. 5576 (doi: 10.1055/s-2006-960171).
        . Semin. Liver Dis. , 1 , 55 - 76
    4. 4)
      • R.D. Kim , A.I. Reed , S. Fujita .
        4. Kim, R.D., Reed, A.I., Fujita, S., et al: ‘Consensus and controversy in the management of hepatocellular carcinoma’, J. Am. Coll. Surg., 2007, 205, pp. 108123 (doi: 10.1016/j.jamcollsurg.2007.02.025).
        . J. Am. Coll. Surg. , 108 - 123
    5. 5)
      • J.S. Lee , I.S. Chu , J. Heo .
        5. Lee, J.S., Chu, I.S., Heo, J., et al: ‘Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling’, Hepatology, 2004, 40, pp. 667676 (doi: 10.1002/hep.20375).
        . Hepatology , 667 - 676
    6. 6)
      • N. Iizuka , M. Oka , H. Yamada-Okabe .
        6. Iizuka, N., Oka, M., Yamada-Okabe, H., et al: ‘Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection’, Lancet, 2003, 361, pp. 923929 (doi: 10.1016/S0140-6736(03)12775-4).
        . Lancet , 923 - 929
    7. 7)
      • H. Okabe , S. Satoh , T. Kato .
        7. Okabe, H., Satoh, S., Kato, T., et al: ‘Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression’, Cancer Res., 2001, 61, pp. 21292137.
        . Cancer Res. , 2129 - 2137
    8. 8)
      • J. Sicklick , Y.-X. Li , A. Jayaraman .
        8. Sicklick, J., Li, Y.-X., Jayaraman, A., et al: ‘Dysregulation of the hedgehog pathway in human hepatocarcinogenesis’, Carcinogenesis, 2005, 27, (4), pp. 748757 (doi: 10.1093/carcin/bgi292).
        . Carcinogenesis , 4 , 748 - 757
    9. 9)
      • S. Huang , J. He , X. Zhang .
        9. Huang, S., He, J., Zhang, X., et al: ‘Activation of the hedgehog pathway in human hepatocellular carcinomas’, Carcinogenesis, 2006, 27, pp. 13341340 (doi: 10.1093/carcin/bgi378).
        . Carcinogenesis , 1334 - 1340
    10. 10)
      • W.T. Cheng , K. Xu , D.Y. Tian .
        10. Cheng, W.T., Xu, K., Tian, D.Y., et al: ‘Role of hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells’, Int. J. Oncol., 2009, 34, pp. 829836.
        . Int. J. Oncol. , 829 - 836
    11. 11)
      • B. Vogelstein , K.W. Kinzler .
        11. Vogelstein, B., Kinzler, K.W.: ‘Cancer genes and the pathways they control’, Nat. Med., 2004, 10, pp. 789799 (doi: 10.1038/nm1087).
        . Nat. Med. , 789 - 799
    12. 12)
      • S. Efroni , C.F. Schaefer , K.H. Buetow .
        12. Efroni, S., Schaefer, C.F., Buetow, K.H.: ‘Identification of key processes underlying cancer phenotypes using biologic pathway analysis’, PLoS ONE, 2007, 2, pp. e425 (doi: 10.1371/journal.pone.0000425).
        . PLoS ONE , e425
    13. 13)
      • C.F. Schaefer . (2007)
        13. Schaefer, C.F.: ‘Pathway interaction database’ (National Cancer Institute & Nature Publishing Group, 2007).
        .
    14. 14)
      • A.H. Bild , G. Yao , J.T. Chang .
        14. Bild, A.H., Yao, G., Chang, J.T., et al: ‘Oncogenic pathway signatures in human cancers as a guide to targeted therapies’, Nature, 2006, 439, pp. 353357 (doi: 10.1038/nature04296).
        . Nature , 353 - 357
    15. 15)
      • G.V. Glinsky , O. Berezovska , A.B. Glinskii .
        15. Glinsky, G.V., Berezovska, O., Glinskii, A.B.: ‘Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer’, J. Clin. Invest., 2005, 115, pp. 15031521 (doi: 10.1172/JCI23412).
        . J. Clin. Invest. , 1503 - 1521
    16. 16)
      • A. Subramanian , P. Tamayo , V.K. Mootha .
        16. Subramanian, A., Tamayo, P., Mootha, V.K., et al: ‘Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles’, Proc. Natl. Acad. Sci. USA, 2005, 102, pp. 1554515550 (doi: 10.1073/pnas.0506580102).
        . Proc. Natl. Acad. Sci. USA , 15545 - 15550
    17. 17)
      • A. Jaimovich , G. Elidan , H. Margalit , N. Friedman .
        17. Jaimovich, A., Elidan, G., Margalit, H., Friedman, N.: ‘Towards an integrated protein–protein interaction network: a relational Markov network approach’, J. Comput. Biol., 2006, 13, pp. 145164 (doi: 10.1089/cmb.2006.13.145).
        . J. Comput. Biol. , 145 - 164
    18. 18)
      • A. Margolin , I. Nemenman , K. Basso .
        18. Margolin, A., Nemenman, I., Basso, K., et al: ‘ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context’, BMC Bioinform., 2006, 7, (S7), pp. 115.
        . BMC Bioinform. , 1 - 15
    19. 19)
      • G. Pandey , B. Zhang , A. Chang .
        19. Pandey, G., Zhang, B., Chang, A., et al: ‘An integrative multi-network and multi-classifier approach to predict genetic interactions’, Plos Comput. Biol., 2010, 6, (9), pp. (e1000928) 114 (doi: 10.1371/journal.pcbi.1000928).
        . Plos Comput. Biol. , 9 , (e1000928) 1 - 14
    20. 20)
      • U. Alon .
        20. Alon, U.: ‘Biological networks: the tinkerer as an engineer’, Science, 2003, 301, pp. 18661867 (doi: 10.1126/science.1089072).
        . Science , 1866 - 1867
    21. 21)
      • E. Segal , N. Friedman , D. Koller , A. Regev .
        21. Segal, E., Friedman, N., Koller, D., Regev, A.: ‘A module map showing conditional activity of expression modules in cancer’, Nat. Genet., 2004, 36, pp. 10901098 (doi: 10.1038/ng1434).
        . Nat. Genet. , 1090 - 1098
    22. 22)
      • A.L. Tarca , S. Draghici , P. Khatri .
        22. Tarca, A.L., Draghici, S., Khatri, P., et al: ‘A novel signaling pathway impact analysis’, Bioinformatics, 2009, 25, pp. 7582 (doi: 10.1093/bioinformatics/btn577).
        . Bioinformatics , 75 - 82
    23. 23)
      • M. Yi , R.M. Stephens .
        23. Yi, M., Stephens, R.M.: ‘SLEPR: a sample-level enrichment-based pathway ranking method – seeking biological themes through pathway-level consistency’, PLoS ONE, 2008, 3, pp. e3288 (doi: 10.1371/journal.pone.0003288).
        . PLoS ONE , e3288
    24. 24)
      • T. Ideker , R. Sharan .
        24. Ideker, T., Sharan, R.: ‘Protein networks in disease’, Genome Res., 2008, 18, pp. 644652 (doi: 10.1101/gr.071852.107).
        . Genome Res. , 644 - 652
    25. 25)
      • B. Ganter , C.N. Giroux .
        25. Ganter, B., Giroux, C.N.: ‘Emerging applications of network and pathway analysis in drug discovery and development’, Curr. Opin. Drug Discov. Dev., 2008, 11, pp. 8694.
        . Curr. Opin. Drug Discov. Dev. , 86 - 94
    26. 26)
      • M. Kalaev , M. Smoot , T. Ideker , R. Sharan .
        26. Kalaev, M., Smoot, M., Ideker, T., Sharan, R.: ‘NetworkBLAST: comparative analysis of protein networks’, Bioinformatics, 2008, 24, pp. 594596 (doi: 10.1093/bioinformatics/btm630).
        . Bioinformatics , 594 - 596
    27. 27)
      • Y. Ofran , B. Rost .
        27. Ofran, Y., Rost, B.: ‘Protein–protein interaction hotspots carved into sequences’, PLoS Comput. Biol., 2007, 3, pp. e119 (doi: 10.1371/journal.pcbi.0030119).
        . PLoS Comput. Biol. , e119
    28. 28)
      • Y. Kim , J.W. Yoon , X. Xiao .
        28. Kim, Y., Yoon, J.W., Xiao, X., et al: ‘Selective down-regulation of glioma-associated oncogene 2 inhibits the proliferation of hepatocellular carcinoma cells’, Cancer Res., 2007, 67, pp. 35833593 (doi: 10.1158/0008-5472.CAN-06-3040).
        . Cancer Res. , 3583 - 3593
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2010.0078
Loading

Related content

content/journals/10.1049/iet-syb.2010.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address