Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Time-dependent corrections to effective rate and event statistics in Michaelis–Menten kinetics

Time-dependent corrections to effective rate and event statistics in Michaelis–Menten kinetics

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors generalise the concept of the geometric phase in stochastic kinetics to a non-cyclic evolution. Its application is demonstrated on kinetics of the Michaelis–Menten reaction. It is shown that the non-periodic geometric phase is responsible for the correction to the Michaelis–Menten law when parameters, such as a substrate concentration, are changing with time. The authors apply these ideas to a model of chemical reactions in a bacterial culture of a growing size, where the geometric correction qualitatively changes the outcome of the reaction kinetics.

References

    1. 1)
      • R.D. Astumian . Comment: detailed balance revisited. Phys. Chem. Chem. Phys.
    2. 2)
      • S. Filipp , Y. Hasegawa , R. Loidl , H. Rauch . Noncyclic geometric phase due to spatial evolution in a neutron interferometer. Phys. Rev. A
    3. 3)
      • N.A. Sinitsyn , J. Ohkubo . Hannay angle and geometric phase shifts under adiabatic parameter changes in classical dissipative systems. J. Phys. A.: Math. Theor.
    4. 4)
      • N.A. Sinitsyn , V.V. Dobrovitski , S. Urazhdin , A. Saxena . Geometric control over the motion of magnetic domain walls. Phys. Rev. B
    5. 5)
      • S.L. Zhu , Z.D. Wang . Nonadiabatic noncyclic geometric phase and ensemble average spectrum of conductance in disordered mesoscopic rings with spin-orbit coupling. Phys. Rev. Lett.
    6. 6)
      • E. Sjöqvist , A.K. Pati , A. Ekert . Geometric phases for mixed states in interferometry. Phys. Rev. Lett.
    7. 7)
      • N.A. Sinitsyn , I. Nemenman . The Berry phase and the pump flux in stochastic chemical kinetics. Eur. Phys. Lett.
    8. 8)
      • C. Marasco , A. Kole , B. Nguyen . (2010) IET Syst. Biol..
    9. 9)
      • D. Astumian . Adiabatic operation of a molecular machine. Proc. Natl. Acad. Sci. (USA)
    10. 10)
      • D.A. Bagrets , Y.V. Nazarov . Full counting statistics of charge transfer in Coulomb blockade systems. Phys. Rev. B
    11. 11)
      • T.B. Kepler , M.L. Kagan . Geometric phase shifts under adiabatic parameter changes in classical dissipative systems. Phys. Rev. Lett.
    12. 12)
      • Y. Shi , Q. Niu . Quantization and corrections of adiabatic particle transport in a periodic ratchet potential. Europhys. Lett.
    13. 13)
      • A. Mostafazadeh . Noncyclic geometric phase and its non-abelian generalization. J. Phys. A: Math. Gen. , 8157 - 8171
    14. 14)
      • S.R. Jain , A.K. Pati . Adiabatic geometric phases and response functions. Phys. Rev. Lett.
    15. 15)
      • A.S. Landsberg . Geometrical phases and symmetries in dissipative systems. Phys. Rev. Lett.
    16. 16)
      • J. Christian , A. Shimony . Non-cyclic geometric phases in a proposed two-photon interferometric experiment. J. Phys. A: Math. Gen. , 5551 - 5567
    17. 17)
      • E. Sjqvist , M. Hedstrm . Noncyclic geometric phase, coherent states, and the time-dependent variational principle: application to coupled electron-nuclear dynamics. Phys. Rev. A
    18. 18)
      • X-B. Wang , L.C. Kwek , Y. Liu , C.H. Oh . Noncyclic phase for neutrino oscillation. Phys. Rev. D
    19. 19)
      • N.A. Sinitsyn , I. Nemenman . Universal geometric theory of stochastic pump and reversible ratchets. Phys. Rev. Lett.
    20. 20)
      • L. Michaelis , M.L. Menten . Die Kinetik der Invertinwirkung. Biochemistry Z.
    21. 21)
      • M.L. Kagan , T.B. Kepler , I.R. Epstein . Geometric phase shifts in chemical oscillators. Nature
    22. 22)
      • A.K. Pati . Adiabatic Berry phase and Hannay angle for open paths. Ann. Phys.
    23. 23)
      • M. Berry . Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A
    24. 24)
      • I. Gopich , A. Szabo . Theory of the statistics of kinetic transitions with application to single-molecule enzyme catalysis. J. Chem. Phys.
    25. 25)
      • W.H. de Ronde , B.C. Daniels , A. Mugler , N.A. Sinitsyn , I. Nemenman . Statistical properties of multistep enzyme-mediated reactions. IET Syst. Biol.
    26. 26)
      • B.P. English , W. Min , A.M. van Oijen . Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem.
    27. 27)
      • J. Ohkubo . The stochastic pump current and the non-adiabatic geometrical phase. J. Stat. Mech.
    28. 28)
      • N.A. Sinitsyn , I. Nemenman . Universal geometric theory of stochastic pump and reversible ratchets. Phys. Rev. B
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2010.0064
Loading

Related content

content/journals/10.1049/iet-syb.2010.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address