Print ISSN 1751-8849"/>
http://iet.metastore.ingenta.com
1887

Towards monitoring real-time cellular response using an integrated microfluidics-matrix assisted laser desorption ionisation/nanoelectrospray ionisation-ion mobility-mass spectrometry platform

Buy article PDF
$19.95
Buy Knowledge Pack
10 articles for $120.00

Abstract

The combination of microfluidic cell trapping devices with ion mobility-mass spectrometry offers the potential for elucidating in real time the dynamic responses of small populations of cells to paracrine signals, changes in metabolite levels and delivery of drugs and toxins. Preliminary experiments examining peptides in methanol and recording the interactions of yeast and Jurkat cells with their superfusate have identified instrumental set-up and control parameters and online desalting procedures. Numerous initial experiments demonstrate and validate this new instrumental platform. Future outlooks and potential applications are addressed, specifically how this instrumentation may be used for fully automated systems biology studies of the significantly interdependent, dynamic internal workings of cellular metabolic and signalling pathways.

References

    1. 1)
      • S. Huang , J. Wikswo , S.G. Amara , E. Bamberg , T. Gudermann . (2006) Dimensions of systems biology, Reviews of Physiology, Biochemistry and Pharmacology.
    2. 2)
      • J.P. Wikswo , A. Prokop , F. Baudenbacher , D. Cliffel , B. Csukas , M. Velkovsky . Engineering challenges of BioNEMS: the integration of microfluidics, and micro- and nanodevices, models, and external control for systems biology. IEE Proc. Nanobiotechnol. , 4 , 81 - 101
    3. 3)
      • M. Schmidt , H. Lipson . Distilling free-form natural laws from experimental data. Science , 5923 , 81 - 85
    4. 4)
      • J. Bongard , H. Lipson . Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. , 24 , 9943 - 9948
    5. 5)
      • J. Bongard , V. Zykov , H. Lipson . Resilient machines through continuous self modeling. Science , 5802 , 1118 - 1121
    6. 6)
      • N.L. Anderson , N.G. Anderson . The human plasma proteome – history, character, and diagnostic prospects. Mol. Cell. Proteom. , 11 , 845 - 867
    7. 7)
      • R.F. Service . Proteomics – public projects gear up to chart the protein landscape. Science , 5649 , 1316 - 1318
    8. 8)
      • M. Brigotti , A. Caprioli , A.E. Tozzi . Shiga toxins present in the gut and in the polymorphonuclear leukocytes circulating in the blood of children with hemolytic-uremic syndrome. J. Clin. Microbiol. , 2 , 313 - 317
    9. 9)
      • S.K. Sia , G.M. Whitesides . Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis , 21 , 3563 - 3576
    10. 10)
      • G.M. Whitesides , E. Ostuni , S. Takayama , X.Y. Jiang , D.E. Ingber . Soft lithography in biology and biochemistry. Ann. Rev. Biomed. Engng. , 335 - 373
    11. 11)
      • S. Faley , K. Seale , J. Hughey . Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel. Lab on a Chip , 1700 - 1712
    12. 12)
      • G.M. Whitesides . The origins and the future of microfluidics. Nature , 7101 , 368 - 373
    13. 13)
      • S.L. Faley , M. Copland , D. Wlodkowic . Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab on a Chip , 18 , 2659 - 2664
    14. 14)
      • M.R. Warnement , S.L. Faley , J.P. Wikswo , S.J. Rosenthal . Quantum dot probes for monitoring dynamic cellular response: reporters of T cell activation. IEEE Trans. NanoBiosci. , 4 , 268 - 272
    15. 15)
      • S.E. Eklund , D.E. Cliffel , E. Kozlov , A. Prokop , J.P. Wikswo , F.J. Baudenbacher . Modification of the CytosensorTM microphysiometer to simultaneously measure extracellular acidification and oxygen consumption rates. Analytica Chimica Acta , 93 - 101
    16. 16)
      • S.E. Eklund , D. Taylor , E. Kozlov , A. Prokop , D.E. Cliffel . A microphysiometer for simultaneous measurement of changes in extracellular glucose, lactate, oxygen, and acidification rate. Anal. Chem. , 3 , 519 - 527
    17. 17)
      • S.E. Eklund , R.M. Snider , J. Wikswo , F. Baudenbacher , A. Prokop , D.E. Cliffel . Multianalyte microphysiometry as a tool in metabolomics and systems biology. J. Electroanal. Chem. , 2 , 333 - 339
    18. 18)
      • S.E. Eklund , R.G. Thompson , R.M. Snider . Metabolic discrimination of select list agents by monitoring cellular responses in a multianalyte microphysiometer. Sensors , 3 , 2117 - 2133
    19. 19)
      • A. Werdich , E.A. Lima , B. Ivanov , I. Ges , J.P. Wikswo , F.J. Baudenbacher . A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab on a Chip , 4 , 357 - 362
    20. 20)
      • I.A. Ges , B.L. Ivanov , D.K. Schaffer , E.A. Lima , A.A. Werdich , F.J. Baudenbacher . Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens. Bioelectron. , 248 - 256
    21. 21)
      • I.A. Ges , B.L. Ivanov , A.A. Werdich , F.J. Baudenbacher . Differential pH measurements of metabolic cellular activity in nL culture volumes using microfabricated iridium oxide electrodes. Biosens. Bioelectron. , 7 , 1303 - 1310
    22. 22)
      • I.A. Ges , I.A. Dzhura , F.J. Baudenbacher . On-chip acidification rate measurements from single cardiac cells confined in sub-nanoliter volumes. Biomed. Microdev. , 3 , 347 - 354
    23. 23)
      • I.A. Ges , F. Baudenbacher . Microfluidic device to confine single cardiac myocytes in sub-nanoliter volumes for extracellular pH measurements. J. Exp. Nanosci. , 1 , 63 - 75
    24. 24)
      • I.A. Ges , F.J. Baudenbacher . Microfabricated amperometric enzyme sensors to monitor cell metabolism in microfluidic devices. BMES Annual Fall Meeting 2008, St. Louis, MO, 24 October 2008
    25. 25)
      • H.S. Chen , T. Rejtar , V. Andreev , E. Moskovets , B.L. Karger . High-speed, high-resolution monolithic capillary LC-MALDI MS using an off-line continuous deposition interface for proteomic analysis. Anal. Chem. , 8 , 2323 - 2331
    26. 26)
      • M.G. Roper , J.G. Shackman , G.M. Dahlgren , R.T. Kennedy . Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal. Chem. , 18 , 4711 - 4717
    27. 27)
      • N.A. Cellar , S.T. Burns , J.C. Meiners , H. Chen , R.T. Kennedy . Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. Anal. Chem. , 21 , 7067 - 7073
    28. 28)
      • J.G. Shackman , G.M. Dahlgren , J.L. Peters , R.T. Kennedy . Perfusion and chemical monitoring of living cells on a microfluidic chip. Lab on a Chip , 56 - 63
    29. 29)
      • N.A. Cellar , R.T. Kennedy . A capillary-PDMS hybrid chip for separations-based sensing of neurotransmitters in vivo. Lab on a Chip , 9 , 1205 - 1212
    30. 30)
      • R.D. Oleschuk , D.J. Harrison . Analytical microdevices for mass spectrometry. TRAC – Trends Anal. Chem. , 6 , 379 - 388
    31. 31)
      • J.H. Chan , A.T. Timperman , D. Qin , R. Aebersold . Microfabricated polymer devices for automated sample delivery of peptides for analysis by electrospray ionization tandem mass spectrometry. Anal. Chem. , 20 , 4437 - 4444
    32. 32)
      • C.H. Chiou , G.B. Lee , H.T. Hsu , P.W. Chen , P.C. Liao . Micro devices integrated with microchannels and electrospray nozzles using PDMS casting techniques. Sens. Actuat. B –Chem. , 280 - 286
    33. 33)
      • Y. Jiang , P.C. Wang , L.E. Locascio , C.S. Lee . Integrated plastic microfluidic devices with ESI-MS for drug screening and residue analysis. Anal. Chem. , 9 , 2048 - 2053
    34. 34)
      • J. Krenkova , F. Foret . Immobilized microfluidic enzymatic reactors. Electrophoresis , 3550 - 3563
    35. 35)
      • J. Lee , S.A. Soper , K.K. Murray . Development of an efficient on-chip digestion system for protein analysis using MALDI-TOF MS. Analyst , 12 , 2426 - 2433
    36. 36)
      • J.S. Mellors , V. Gorbounov , R.S. Ramsey , J.M. Ramsey . Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. Anal. Chem. , 18 , 6881 - 6887
    37. 37)
      • X.Y. Liu , S.J. Valentine , M.D. Plasencia , S. Trimpin , S. Naylor , D.E. Clemmer . Mapping the human plasma proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom. , 7 , 1249 - 1264
    38. 38)
      • L.S. Fenn , J.A. Mclean . Biomolecular structural separations by ion mobility-mass spectrometry. Anal. Bioanal. Chem. , 3 , 905 - 909
    39. 39)
      • L.S. Fenn , M. Kliman , A. Mahsut , S.R. Zhao , J.A. Mclean . Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal. Bioanal. Chem. , 235 - 244
    40. 40)
      • L.S. Fenn , J.A. Mclean . Simultaneous glycoproteomics on the basis of structure using ion mobility-mass spectrometry. Mol. Biosyst. , 11 , 1298 - 1302
    41. 41)
      • J.A. Mclean . The mass-mobility correlation redux: the conformational landscape of anhydrous biomolecules. J. Am. Soc. Mass Spectrom. , 10 , 1775 - 1781
    42. 42)
      • R. Aebersold , M. Mann . Mass spectrometry-based proteomics. Nature , 6928 , 198 - 207
    43. 43)
      • G.A. Valaskovic , N.L. Kelleher , F.W. McLafferty . Attomole protein characterization by capillary electrophoresis mass spectrometry. Science , 5279 , 1199 - 1202
    44. 44)
      • Clemmer, D.E., Hyzler, C.S.H., Srebalus, C.A.: `Multidimensional nested ion-mobility/time-of-flight mass spectrometry for the analysis of complex biological mixtures', Abstracts of Papers of the American Chemical Society, 2001, 222, p. U9.
    45. 45)
      • A.E. Counterman , S.J. Valentine , C.A. Srebalus , S.C. Henderson , C.S. Hoaglund , D.E. Clemmer . High-order structure and dissociation of gaseous peptide aggregates that are hidden in mass spectra. J. Am. Soc. Mass Spectrom. , 8 , 743 - 759
    46. 46)
      • C.A. Srebalus , J.W. Li , W.S. Marshall , D.E. Clemmer . Gas phase separations of electrosprayed peptide libraries. Anal. Chem. , 18 , 3918 - 3927
    47. 47)
      • M.H. Moon , S. Myung , M. Plasencia , A.E. Hilderbrand , D.E. Clemmer . Nanoflow LC/ion mobility/CID/TOF for proteomics: analysis of a human urinary Proteome. J. Proteom. Res. , 6 , 589 - 597
    48. 48)
      • J.A. McLean , J.A. Schultz , A.S. Woods , R.B. Cole . (2010) Ion mobility-mass spectrometry, Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicabilities, and biological applications.
    49. 49)
      • A.B. Kanu , P. Dwivedi , M. Tam , L. Matz , H.H. Hill . Ion mobility-mass spectrometry. J. Mass Spectrom. , 1 , 1 - 22
    50. 50)
      • E.W. McDaniel . (1964) Collision phenomena in ionized gases.
    51. 51)
      • E.A. Mason , E.W. McDaniel . (1988) Transport properties of ions in gases.
    52. 52)
      • E.W. McDaniel , L.A. Viehland . The transport of slow ions in gases – experiment, theory, and applications. Phys. Rep. Rev. Sect. Phys. Lett. , 333 - 367
    53. 53)
      • A dual source ion mobility-mass spectrometer for direct comparison of ESI and MALDI collision cross section measurements. Anal. chem. , 8 , 3247 - 3254
    54. 54)
      • T.C. Rohner , D. Staab , M. Stoeckli . MALDI mass spectrometric imaging of biological tissue sections. Mech. Ageing Dev. , 1 , 177 - 185
    55. 55)
      • M.R. Emmett , R.M. Caprioli . Micro-electrospray mass-spectrometry – ultra-high-sensitivity analysis of peptides and proteins. J. Am. Soc. Mass Spectrom. , 7 , 605 - 613
    56. 56)
      • M.C. Hennion . Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J. Chrom. A , 3 - 54
    57. 57)
      • Q.Y. Wu , C.L. Liu , R.D. Smith . On-line microdialysis desalting for electrospray ionization mass spectrometry of proteins and peptides. Rapid Commun. Mass Spectrom. , 7 , 835 - 838
    58. 58)
      • J.A. Jakubowski , N.G. Hatcher , J.V. Sweedler . Online microdialysis-dynamic nanoelectrospray ionization-mass spectrometry for monitoring neuropeptide secretion. J. Mass Spectrom. , 7 , 924 - 931
    59. 59)
      • P. Fabrizio , V.D. Longo . The chronological life span of Saccharomyces cerevisiae. Aging Cell , 2 , 73 - 81
    60. 60)
      • R.D. King , J. Rowland , S.G. Oliver . The automation of science. Science , 5923 , 85 - 89
    61. 61)
      • L.N. Soldatova , A. Clare , A. Sparkes , R.D. King . An ontology for a robot scientist. Bioinformatics , 14 , e464 - e471

Related content

content/journals/10.1049/iet-syb.2010.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address