Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Multivariate dependence and genetic networks inference

Multivariate dependence and genetic networks inference

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A critical task in systems biology is the identification of genes that interact to control cellular processes by transcriptional activation of a set of target genes. Many methods have been developed that use statistical correlations in high-throughput data sets to infer such interactions. However, cellular pathways are highly cooperative, often requiring the joint effect of many molecules. Few methods have been proposed to explicitly identify such higher-order interactions, partially due to the fact that the notion of multivariate statistical dependence itself remains imprecisely defined. The authors define the concept of dependence among multiple variables using maximum entropy techniques and introduce computational tests for their identification. Synthetic network results reveal that this procedure uncovers dependencies even in undersampled regimes, when the joint probability distribution cannot be reliably estimated. Analysis of microarray data from human B cells reveals that third-order statistics, but not second-order ones, uncover relationships between genes that interact in a pathway to cooperatively regulate a common set of targets.

References

    1. 1)
      • C.E. Shannon . A mathematical theory of communication. AT&T Tech. J. , 3 , 379 - 423
    2. 2)
      • J.N. Darroch . Interactions in multi-factor contingency tables. J. Roy. Stat. Soc. Ser. B (Methodol.) , 1 , 251 - 263
    3. 3)
      • H.J. Bussemaker , H. Li , E.D. Siggia . Regulatory element detection using correlation with expression. Nat. Genet. , 2 , 167 - 171
    4. 4)
      • M.A. Beer , S. Tavazoie . Predicting gene expression from sequence. Cell , 2 , 185 - 198
    5. 5)
      • S. Peri , J.D. Navarro , R. Amanchy . Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. , 10 , 2363 - 2371
    6. 6)
      • S. Kullback , R.A. Leibler . On information and sufficiency. Ann. Math. Stat. , 1 , 142 - 143
    7. 7)
      • S. Amari . Information geometry on hierarchy of probability distributions. IEEE Trans. Inf. Theory , 5 , 1701 - 1711
    8. 8)
      • M. Schena , D. Shalon , R.W. Davis , P.O. Brown . Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science , 5235 , 467 - 470
    9. 9)
      • S.N. Roy , M.A. Kastenbaum . On the hypothesis of no “interaction” in a multi-way contingency table. Ann. Math. Stat. , 3 , 749 - 757
    10. 10)
      • S. Kullback . Probability densities with given marginals. Ann. Math. Stat. , 4 , 1236 - 1243
    11. 11)
      • J. Lu , G. Getz , E.A. Miska . MicroRNA expression profiles classify human cancers. Nature , 7043 , 834 - 838
    12. 12)
      • I. Nemenman , F. Shafee , W. Bialek , T.G. Dietterich , S. Becker , Z. Ghahramani . (2002) Entropy and inference revisited', in, Advances in neural information processing systems.
    13. 13)
      • H.H. Ku , S. Kullback . Interaction in multidimensional contingency tables: an information theoretic approach. J. Res. Natl. Bur. Stand (Math. Sci.) , 3 , 159 - 200
    14. 14)
      • B. Luscher , E.A. Kuenzel , E.G. Krebs , R.N. Eisenman . Myc oncoproteins are phosphorylated by casein kinase II. Embo J. , 4 , 1111 - 1119
    15. 15)
      • E. Schneidman , S. Still , M.J. Berry , W. Bialek . Network information and connected correlations. Phys. Rev. Lett. , 23
    16. 16)
      • W. Lu , E. Kimball , J.D. Rabinowitz . A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. J. Am. Soc. Mass. Spectrom. , 1 , 37 - 50
    17. 17)
      • A. Agresti . (1990) Categorical data analysis.
    18. 18)
      • H.O. Lancaster . Complex contingency tables treated by the partition of chi square. J. Roy. Stat. Soc. Ser. B (Methodol.) , 2 , 242 - 249
    19. 19)
      • I.J. Good . Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables. Ann. Math. Stat. , 3 , 911 - 934
    20. 20)
      • A.A. Margolin . (2009) Computational inference of genetic networks in human cancer cells.
    21. 21)
      • W.E. Deming , F.F. Stephan . On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. , 427 - 444
    22. 22)
      • A.A. Margolin , K. Wang , W.K. Lim , M. Kustagi , I. Nemenman , A. Califano . Reverse engineering cellular networks. Nat. Protocols , 2 , 662 - 671
    23. 23)
      • T. Palomero , W. Lim , D. Odom . NOTCH1 directly regulates MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl. Acad. Sci. , 48 , 18261 - 18266
    24. 24)
      • N. Friedman . Inferring cellular networks using probabilistic graphical models. Science , 5659 , 799 - 805
    25. 25)
      • N.E. Buchler , U. Gerland , T. Hwa . On schemes of combinatorial transcription logic. Proc. Natl. Acad. Sci. USA , 9 , 5136 - 5141
    26. 26)
      • K. Bousset , M. Henriksson , J.M. Luscher-Firzlaff , D.W. Litchfield , B. Luscher . Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene , 12 , 3211 - 3220
    27. 27)
      • A.A. Margolin , A. Califano . Theory and limitations of genetic network inference from microarray data. Ann. NY Acad. Sci. , 51 - 72
    28. 28)
      • Bell, A.J.: `Co-information lattice', RNI-TR-02–1, Technical, 2002.
    29. 29)
      • I. Nemenman , W. Bialek , R.R. de Ruyter van Steveninck . Entropy and information in neural spike trains: progress on the sampling problem. Phys. Rev. E , 5
    30. 30)
      • K. Wang , M. Saito , B.C. Bisikirska . Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat. Biotechnol. , 9 , 829 - 839
    31. 31)
      • A.J. Hartemink , D.K. Gifford , T.S. Jaakkola , R.A. Young . (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks.
    32. 32)
      • P.C. Fernandez , S.R. Frank , L. Wang . Genomic targets of the human c-Myc protein. Genes Dev. , 9 , 1115 - 1129
    33. 33)
      • P.M. Lewis . Approximating probability distributions to reduce storage requirements. Inf. Control. , 214 - 225
    34. 34)
      • S. Watanabe . Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. , 1 , 66 - 82
    35. 35)
      • U. Klein , Y. Tu , G.A. Stolovitzky . Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. , 11 , 1625 - 1638
    36. 36)
      • D. Anastassiou . Computational analysis of the synergy among multiple interacting genes. Mol. Syst. Biol.
    37. 37)
      • T.M. Cover , J.A. Thomas . (2006) Elements of information theory.
    38. 38)
      • C.T. Ireland , S. Kullback . Contingency tables with given marginals. Biometrika , 1 , 179 - 188
    39. 39)
      • O.D. Perez , G.P. Nolan . Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat. Biotechnol. , 2 , 155 - 162
    40. 40)
      • H. Niiro , E.A. Clark . Regulation of B-cell fate by antigen-receptor signals. Nat. Rev. Immunol. , 12 , 945 - 956
    41. 41)
      • Wang, K., Nemenman, I., Banerjee, N.: `Genome-wide identification of modulators of transcriptional networks in human B lymphocytes', Proc. Tenth Annual Int. Conf. on Research in Computational Molecular Biology (RECOMB), 2006, p. 348–362, (LNCS, 3909).
    42. 42)
      • H. Joe . (1997) Multivariate models and dependence concepts.
    43. 43)
      • G. Chechick , A. Globerson , M.J. Anderson , T. Dietterich , S. Becker , Z. Ghahramani . (2002) Groups redundancy measures reveal redundancy reduction along the auditory pathway’,, Advance in Neural Information Processing System.
    44. 44)
      • A. Niknejad .
    45. 45)
      • I. Nemenman , G.D. Lewen , W. Bialek , R.R. de Ruyter van Steveninck . Neural coding of natural stimuli: information at sub-millisecond resolution. PLoS Comput. Biol. , 3
    46. 46)
      • K.I. Zeller , A.G. Jegga , B.J. Aronow , K.A. O'Donnell , C.V. Dang . An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. , 10
    47. 47)
      • A.A. Margolin , I. Nemenman , K. Basso . ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf.
    48. 48)
      • J. Watkinson , K.C. Liang , X. Wang , T. Zheng , D. Anastassiou . Inference of regulatory gene interactions from expression data using three-way mutual information. Ann. NY Acad. Sci. , 302 - 313
    49. 49)
      • S.P. Strong , R. Koberle , R.R. de Ruyter van Steveninck , W. Bialek . Entropy and information in neural spike train. Phys. Rev. Lett. , 197 - 200
    50. 50)
      • L. Martignon . Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Comput. , 2621 - 2653
    51. 51)
      • D. Pe'er , A. Regev , G. Elidan , N. Friedman . Inferring subnetworks from perturbed expression profiles. Bioinformatics , S215 - S224
    52. 52)
      • J. Pearl . (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference.
    53. 53)
      • N. Slonim , O. Elemento , S. Tavazoie . Ab initio genotype-phenotype association reveals intrinsic modularity in genetic networks. Mol. Syst. Biol.
    54. 54)
      • E.T. Jaynes . Information theory and statistical mechanics. Phys. Rev. , 620 - 630
    55. 55)
      • W.R. Garner , W.J. McGill . The relation between information and variance analysis. Psychometrika , 3 , 219 - 228
    56. 56)
      • K. Basso , A.A. Margolin , G. Stolovitzky , U. Klein , R. Dalla-Favera , A. Califano . Reverse engineering of regulatory networks in human B cells. Nat. Genet. , 4 , 382 - 390
    57. 57)
      • V. Matys , E. Fricke , R. Geffers . TRANSFAC: transcriptional regulation, from patterns to profiles. Nucl. Acids Res. , 1 , 374 - 378
    58. 58)
      • A. de la Fuente , N. Bing , I. Hoeschele , P. Mendes . Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics , 18 , 3565 - 3574
    59. 59)
      • E. Soofi . A generalized formulation of conditional logit with diagnostics. J. Am. Stat. Assoc. , 419 , 812 - 816
    60. 60)
      • I. Csiszar . I-divergence geometry of probability distributions and minimization problems. Ann. Probab. , 1 , 146 - 158
    61. 61)
      • W. McGill . Multivariate information transmission. IRE Trans. Inf. Theory , 93 - 110
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2010.0009
Loading

Related content

content/journals/10.1049/iet-syb.2010.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address