Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling

Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Detailed kinetic models at the network reaction level are usually constructed using enzymatic mechanistic rate equations and the associated kinetic parameters. However, during the cellular life cycle thousands of different reactions occur, which makes it very difficult to build a detailed large-scale ldnetic model. In this work, we provide a critical overview of specific limitations found during the reconstruction of the central carbon metabolism dynamic model from E. coli (based on kinetic data available). In addition, we provide clues that will hopefully allow the systems biology community to more accurately construct metabolic dynamic models in the future. The difficulties faced during the construction of dynamic models are due not only to the lack of kinetic information but also to the fact that some data are still not curated. We hope that in the future, with the standardization of the in vitro enzyme protocols the approximation of in vitro conditions to the in vivo ones, it will be possible to integrate the available kinetic data into a complete large scale model. We also expect that collaborative projects between modellers and biologists will provide valuable kinetic data and permit the exchange of important information to solve most of these issues.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • Genome Analysis Project, http://ecoli.naist.jp/GB8/, 2006.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • B.E. Wright , M. Butler , K.R. Albe . Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. J. Biol. Chem. , 5 , 3101 - 3105
    16. 16)
    17. 17)
      • http://sysbio.molgen.mpg.de/KMedDB, 2010.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • B. Teusink , J. Passarge , C.A. Reijenga . Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. , 17 , 5313 - 5329
    25. 25)
    26. 26)
    27. 27)
      • www.bionumbers.org, 2008.
    28. 28)
    29. 29)
      • D.A. Fell . Metabolic control analysis – a survey of its theoretical and experimental development. Biochem. J. , 313 - 330
    30. 30)
    31. 31)
    32. 32)
      • ‘The database of useful biological numbers’, www.bionumbers.org, 2008.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
      • STRENDA commission, available at www.strenda.org/documents.html, 2008.
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • W. Wiechert , R. Takors , B.N. Kholodenko , H.V. Westerhoff . (2004) Validation of metaboli models: concepts, tools, and problems, Metabolic engineering in the post genomic era.
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
      • B.M. Bakker , P.A.M. Michels , F.R. Opperdoes , H.V. Westerhoff . Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J. Biol. Chem. , 6 , 3207 - 3215
    57. 57)
      • O. Resendis-Antonio . Filling kinetics gaps: dynamic modeling of metabolism where detailed kinetic information is lacking. PLoS ONE , 3 , 1 - 11
    58. 58)
    59. 59)
    60. 60)
      • R.A. Alberty . Biochemical thermodinamics: applications of mathematica. Methods Biochem. Anal. , 1 - 458
    61. 61)
    62. 62)
    63. 63)
      • T. Fifif , R.K. Scopes . Purification of 3-phosphoglycerate from diverse sources by affinity elution chromatography. Biochem. J. , 311 - 319
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2009.0058
Loading

Related content

content/journals/10.1049/iet-syb.2009.0058
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address