Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Multi-objective mixed integer strategy for the optimisation of biological networks

Multi-objective mixed integer strategy for the optimisation of biological networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this contribution, the authors consider multi-criteria optimisation problems arising from the field of systems biology when both continuous and integer decision variables are involved. Mathematically, they are formulated as mixed-integer non-linear programming problems. The authors present a novel solution strategy based on a global optimisation approach for dealing with this class of problems. Its usefulness and capabilities are illustrated with two metabolic engineering case studies. For these problems, the authors show how the set of optimal solutions (the so-called Pareto front) is successfully and efficiently obtained, providing further insight into the systems under consideration regarding their optimal manipulation.

References

    1. 1)
      • J. Handl , D.B. Kell , J. Knowles . Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans. Comput. Biol. Bioinf. , 2 , 279 - 291
    2. 2)
      • R.M. Alexander . (1982) Optima for animals.
    3. 3)
      • H.J. Greenberg , W.E. Hart , G. Lancia . Opportunities for combinatorial optimization in computational biology. INFORMS J. Comput. , 3 , 211 - 231
    4. 4)
      • L. Regan , I.D.L. Bogle , P. Dunnill . Simulation and optimization of metabolic pathways. Comput. Chem. Eng. , 627 - 637
    5. 5)
      • P. Mendes , D.B. Kell . Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics , 10 , 869 - 883
    6. 6)
      • J. Koski , R. Silvennoinen . Norm methods and partial weighting in multicriterion optimization of structures. Int. J. Numer. Methods Eng. , 6 , 1101 - 1121
    7. 7)
      • F.G. Vital-Lopez , A. Armaou , E.V. Nikolaev , C.D. Maranas . A computational procedure for optimal engineering intervention using kinetic models of metabolism. Biotechnol. Prog. , 6 , 1507 - 1517
    8. 8)
      • O. Exler , L.T. Antelo , J.A. Egea , A.A. Alonso , J.R. Banga . A Tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design. Comput. Chem. Eng. , 8 , 1877 - 1891
    9. 9)
      • K. Deb . (2001) Multi-objective optimization using evolutionary algorithms.
    10. 10)
      • J.O.H. Sendín , I. Otero-Muras , A.A. Alonso , J.R. Banga . Improved optimization methods for the multiobjective design of bioprocess. Ind. Eng. Chem. Res. , 25 , 8594 - 8603
    11. 11)
      • J.E. Bailey . Toward a science of metabolic engineering. Science , 5013 , 1668 - 1675
    12. 12)
      • W.J. Sutherland . The best solution. Nature , 7042 , 569 - 569
    13. 13)
      • P. Pharkya , C.D. Maranas . An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metabolic Eng. , 1 , 1 - 13
    14. 14)
      • N.V. Torres , E.O. Voit , C. González-Alcón . Optimization of nonlinear biotechnological processes with linear programming: application to citric acid production by Aspergillus niger. Biotechnol. Bioeng. , 3 , 247 - 258
    15. 15)
      • K.R. Patil , I. Rocha , J. Förster , J. Nielsen . Evolutionary programming as a platform in silico metabolic engineering. BMC Bioinf.
    16. 16)
      • G. Stephanopoulos , D.E. Stafford . Metabolic engineering: a new frontier of chemical reaction engineering. Chem. Eng. Sci. , 14 , 2595 - 2602
    17. 17)
      • F. Shiraishi , M.A. Savageau . The tricarboxylic acid cycle in Dictyostelium discoideum. Systemic effects of including protein turnover in the current novel. J. Biol. Chem. , 23 , 16917 - 16928
    18. 18)
      • V. Hatzimanikatis , C.A. Floudas , J.E. Bailey . Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. , 5 , 1277 - 1290
    19. 19)
      • I. Das , J.E. Dennis . Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. , 3 , 631 - 657
    20. 20)
      • S. Schuster , R. Schuster , R. Heinrich . Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. II. Time hierarchy, enzymatic rate laws, and erythrocyte metabolism. J. Math. Biol. , 5 , 443 - 455
    21. 21)
      • O. Exler , K. Schittkowski . A trust region SQP algorithm for mixed-integer nonlinear programming. Optim. Lett. , 3 , 269 - 280
    22. 22)
      • A.P. Burgard , P. Pharkya , C.D. Maranas . OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. , 6 , 647 - 657
    23. 23)
      • J.O.H. Sendin , J. Vera , N.V. Torres , J.R. Banga . Model-based optimization of biochemical systems using multiple objectives: a comparison of several solution strategies. Math. Comput. Model. Dyn. Syst. , 5 , 469 - 487
    24. 24)
      • P. Larranaga , B. Calvo , R. Santana . Machine learning in bioinformatics. Briefings Bioinf. , 1 , 86 - 112
    25. 25)
      • P.M. Schlosser , J.E. Bailey . An integrated modeling-experimental strategy for the analysis of metabolic pathways. Math. Biosci. , 1 , 87 - 114
    26. 26)
      • J.R. Banga . Optimization in computational systems biology. BMC Syst. Biol.
    27. 27)
      • V. Hatzimanikatis , C.A. Floudas , J.E. Bailey . Optimization of regulatory architectures in metabolic reaction networks. Biotechnol. Bioeng. , 4 , 485 - 500
    28. 28)
      • J.P. Dean , G.A. Dervakos . Design of process-compatible biological agents. Comput. Chem. Eng. , S67 - S72
    29. 29)
      • F. Rodríguez-Acosta , C.M. Regalado , N.V. Torres . Non-linear optimization of biotechnological processes by stochastic algorithms. Applications to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae. J. Biotechnol. , 1 , 15 - 28
    30. 30)
      • E.O. Voit . Optimization in integrated biochemical systems. Biotechnol. Bioeng. , 5 , 572 - 582
    31. 31)
      • K.M. Miettinen . (1999) Nonlinear multiobjective optimization.
    32. 32)
      • H. Kacser , L. Acerenza . A universal method for achieving increases in metabolite production. Eur. J. Biochem. , 2 , 361 - 367
    33. 33)
      • Shukla, P.K.: `On the normal boundary intersection method for generation of efficient front', Proc. Seventh Int. Conf. on Computational Science, Part I: ICSS 2007, Beijing, China, p. 310–317.
    34. 34)
      • R. Heinrich , S. Schuster . (1996) The regulation of cellular systems.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2009.0045
Loading

Related content

content/journals/10.1049/iet-syb.2009.0045
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address