Print ISSN 1751-8849"/>
http://iet.metastore.ingenta.com
1887

Integrating BioPAX pathway knowledge with SBML models

Buy article PDF
$19.95
Buy Knowledge Pack
10 articles for $120.00

Abstract

Online databases store thousands of molecular interactions and pathways, and numerous modelling software tools provide users with an interface to create and simulate mathematical models of such interactions. However, the two most widespread used standards for storing pathway data (biological pathway exchange; BioPAX) and for exchanging mathematical models of pathways (systems biology markup language; SBML) are structurally and semantically different. Conversion between formats (making data present in one format available in another format) based on simple one-to-one mappings may lead to loss or distortion of data, is difficult to automate, and often impractical and/or erroneous. This seriously limits the integration of knowledge data and models. In this paper we introduce an approach for such integration based on a bridging format that we named systems biology pathway exchange (SBPAX) alluding to SBML and BioPAX. It facilitates conversion between data in different formats by a combination of one-to-one mappings to and from SBPAX and operations within the SBPAX data. The concept of SBPAX is to provide a flexible description expanding around essential pathway data – basically the common subset of all formats describing processes, the substances participating in these processes and their locations. SBPAX can act as a repository for molecular interaction data from a variety of sources in different formats, and the information about their relative relationships, thus providing a platform for converting between formats and documenting assumptions used during conversion, gluing (identifying related elements across different formats) and merging (creating a coherent set of data from multiple sources) data.

References

    1. 1)
      • I. Vastrik , P. D'Eustachio , E. Schmidt . Reactome: a knowledge base of biologic pathways and processes. Genome Biol. , 3
    2. 2)
      • P.D. Karp , C.A. Ouzounis , C. Moore-Kochlacs . Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res , 19 , 6083 - 6089
    3. 3)
      • http://pid.nci.nih.gov/, accessed April 2009.
    4. 4)
      • N. Le Novère , B. Bornstein , A. Broicher . BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res , D689 - D691
    5. 5)
      • http://www.inoh.org/, accessed April 2009.
    6. 6)
      • H. Ogata , S. Goto , K. Sato , W. Fujibuchi , H. Bono , M. Kanehisa . KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. , 1 , 29 - 34
    7. 7)
      • I.I. Moraru , J.C. Schaff , B.M. Slepchenko . Virtual Cell modelling and simulation software environment. IET Syst. Biol. , 5 , 352 - 362
    8. 8)
      • S. Hoops , S. Sahle , R. Gauges . COPASI – a COmplex PAthway Simulator. Bioinformatics , 24 , 3067 - 3074
    9. 9)
      • A. Funahashi , N. Tanimura , M. Morohashi , H. Kitano . CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO , 159 - 162
    10. 10)
      • A. Zinovyev , E. Viara , L. Calzone , E. Barillot . BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks. Bioinformatics , 876 - 877
    11. 11)
      • P. Shannon , A. Markiel , O. Ozier . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. , 11 , 2498 - 2504
    12. 12)
      • E. Demir , O. Babur , U. Dogrusoz . PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways. Bioinformatics , 7 , 996 - 1003
    13. 13)
      • J.S. Luciano . PAX of mind for pathway researchers. Drug Discov. Today , 937 - 942
    14. 14)
      • M. Hucka , A. Finney , H.M. Sauro . The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics , 524 - 531
    15. 15)
      • Ruebenacker, O., Moraru, I.I., Schaff, J.C., Blinov, M.L.: `Kinetic modeling using BioPAX ontology', Proc. 2007 IEEE Int. Conf. Bioinformatics and Biomedicine, 2007, p. 339–348.
    16. 16)
      • M.L. Blinov , O. Ruebenacker , I.I. Moraru . Complexity and modularity of intracellular networks: a systematic approach for modelling and simulation. IET Syst. Biol. , 5 , 363 - 368
    17. 17)
      • M. Ashburner , C.A. Ball , J.A. Blake . Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. , 25 - 29
    18. 18)
      • N. Le Novere , A. Finney , M. Hucka . Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol. , 12 , 1509 - 1515
    19. 19)
      • N. Le Novere . Model storage, exchange and integration. BMC Neurosci.
    20. 20)
      • A. Gatti , Z. Huang , P.T. Tuazon , J.A. Traugh . Multisite autophosphorylation of p21-activated protein kinase gamma-PAK as a function of activation. J. Biol. Chem. , 12 , 8022 - 8028
    21. 21)
      • M.L. Blinov , J.R. Faeder , B. Goldstein , W.S. Hlavacek . A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. Biosystems , 136 - 151
    22. 22)
      • K.W. Kohn , M.I. Aladjem , J.N. Weinstein , Y. Pommier . Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Mol. Biol. Cell , 1 , 1 - 13
    23. 23)
      • http://www.w3.org/TR/owl-features/. Accessed April 2009.
    24. 24)
      • http://vcell.org/biopax/sbpax.html. Accessed April 2009.
    25. 25)
      • http://www.w3.org/XML/. Accessed April 2009.
    26. 26)
      • http://www.w3.org/DesignIssues/Notation3.html. Accessed April 2009.
    27. 27)
      • Jiang, K., Nash, C.: `Ontology-based aggregation of biological pathway datasets', Conf. Proc. IEEE Eng. Med. Biol. Soc., 2005, 7, p. 7742–7745.
    28. 28)
      • M. Schulz , J. Uhlendorf , E. Klipp , W. Liebermeister . SBMLmerge, a system for combining biochemical network models. Genome Inform. , 1 , 62 - 71
    29. 29)
      • E. Jeong , M. Nagasaki , A. Saito , S. Miyano . Cell system ontology: representation for modeling, visualizing, and simulating biological pathways. In Silico Biol. , 6 , 623 - 638
    30. 30)
      • C.M. Lloyd , M.D. Halstead , P.F. Nielsen . CellML: its future, present and past. Prog. Biophys. Mol. Biol. , 433 - 450
    31. 31)
      • A.L. Lister , M. Pocock , A. A Wipat . Integration of constraints documented in SBML, SBO, and the SBML – Manual facilitates validation of biological models. J. Integr. Bioinf. , 3
    32. 32)
      • Köhn, D., Lena Strömbäck, L.: `A method for semi-automatic integration of standards in systems biology', 19thInt. Conf. Database and Expert Systems Applications (DEXA) 2008, 2008, p. 745–752, (Lecture Notes in Computer Science 5181, (0745)).

Related content

content/journals/10.1049/iet-syb.2009.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address