Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Virtual energy storage capacity estimation using ANN-based kWh modelling of refrigerators

Prolific integration of renewable energy sources (RESs) such as solar photovoltaic systems into the distribution network will result in various issues associated with their intermittent nature. Energy storage is a vital component for overcoming issues associated with the intermittent nature of such RES. Though stationary battery systems are used as energy storage for such applications, smart energy storage (SES) systems are also becoming popular owing to various advantages and advent of smart grid systems. SES can be achieved by aggregating electric vehicles (EVs) or by using demand response management for loads with large time constants. Aggregated residential refrigerators are potential candidates for creating SES which has virtual storage capacity, unlike EVs. In this study, residential refrigerators are modelled analogously to energy capacity and self-discharge of electro-chemical batteries using the artificial neural network based kWh modelling. The model is further extended to estimate the virtual energy storage (VES) capacity with aggregated residential refrigerators; particularly in high-rise residential buildings. Simulation results are presented for scenarios covering the complete range of thermal capacity of typical refrigerators applicable in Singapore's climatic condition. Furthermore, a brief description of the possible applications for the estimated VES, pertaining to smart grid architecture and cyber-attack is also presented.

References

    1. 1)
      • 16. Kandasamy, N.K., Tseng, K.J., Soong, B.: ‘A virtual storage capacity using demand response management to overcome intermittency of solar PV generation’, IET Renew. Power Gener., 2017, 11, (14), pp. 1741-1748.
    2. 2)
      • 37. Wang, R., Wang, P., Xiao, G., et al: ‘Power demand and supply management in microgrids with uncertainties of renewable energies’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 260269.
    3. 3)
      • 9. Xu, D., Li, H., Zhu, Y., et al: ‘High-surety microgrid: super uninterruptable power supply with multiple renewable energy sources’, Electr. Power Compon. Syst., 2015, 43, (8-10), pp. 839853.
    4. 4)
      • 14. Greenwood, D., Lim, K., Patsios, C., et al: ‘Frequency response services designed for energy storage’, Appl. Energy, 2017, 203, (Supplement C), pp. 115127.
    5. 5)
      • 26. Pipattanasomporn, M., Kuzlu, M., Rahman, S.: ‘An algorithm for intelligent home energy management and demand response analysis’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 21662173.
    6. 6)
      • 8. Vithayasrichareon, P., MacGill, I.F.: ‘Valuing large-scale solar photovoltaics in future electricity generation portfolios and its implications for energy and climate policies’, IET Renew. Power Gener., 2016, 10, (1), pp. 7987.
    7. 7)
      • 22. Goddard, G., Klose, J., Backhaus, S.: ‘Model development and identification for fast demand response in commercial HVAC systems’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 20842092.
    8. 8)
      • 32. Hughes, J.T., Domínguez-García, A.D., Poolla, K.: ‘Virtual battery models for load flexibility from commercial buildings’. 2015 48th Hawaii Int. Conf. on System Sciences (HICSS), Kauai, HI, USA, 2015, pp. 26272635.
    9. 9)
      • 54. Lewis, F., Ge, S.S.: ‘Neural networks in feedback control systems’, ed. by Kutz, M.: ‘Mechanical engineers' handbook’, (John Wiley and Sons, New Jersey, USA), p. 1-28.
    10. 10)
      • 40. Cheng, M., Sami, S.S., Wu, J.: ‘Virtual energy storage system for smart grids’, Energy Procedia, 2016, 88, pp. 436442.
    11. 11)
      • 36. Hug-Glanzmann, G.: ‘A hybrid approach to balance the variability and intermittency of renewable generation’. 2011 IEEE Trondheim PowerTech, Trondheim, Norway, 2011, pp. 18.
    12. 12)
      • 24. Yi, P., Dong, X., Iwayemi, A., et al: ‘Real-time opportunistic scheduling for residential demand response’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 227234.
    13. 13)
      • 42. Zhao, D., Wang, H., Huang, J., et al: ‘Pricing-based energy storage sharing and virtual capacity allocation’. 2017 IEEE Int. Conf. on Communications (ICC), Paris, France, 2017, pp. 16.
    14. 14)
      • 18. Yang, X., Xu, M., Xu, S., et al: ‘Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining’, Appl. Energy, 2017, 206, (Supplement C), pp. 683696.
    15. 15)
      • 46. Björk, E., Palm, B., Nordenberg, J.: ‘A thermographic study of the on–off behavior of an all-refrigerator’, Appl. Therm. Eng., 2010, 30, (14), pp. 19741984.
    16. 16)
      • 20. Zhou, D., Zhao, C.-Y., Tian, Y.: ‘Review on thermal energy storage with phase change materials (PCMS) in building applications’, Appl. Energy, 2012, 92, pp. 593605.
    17. 17)
      • 53. Hagan, M.T., Demuth, H.B., Jesús, O.D.: ‘An introduction to the use of neural networks in control systems’, Int. J. Robust Nonlinear Control, 2002, 12, (11), pp. 959985.
    18. 18)
      • 43. Wang, D., Meng, K., Gao, X., et al: ‘Coordinated dispatch of virtual energy storage systems in LV grids for voltage regulation’, IEEE Trans. Ind. Inf., 2017, Early Access: DOI: 10.1109/TII.2017.2769452.
    19. 19)
      • 41. Cheng, M., Sami, S.S., Wu, J.: ‘Benefits of using virtual energy storage system for power system frequency response’, Appl. Energy, 2017, 194, pp. 376385.
    20. 20)
      • 17. Uddin, K., Gough, R., Radcliffe, J., et al: ‘Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom’, Appl. Energy, 2017, 206, (Supplement C), pp. 1221.
    21. 21)
      • 49. Björk, E., Palm, B.: ‘Performance of a domestic refrigerator under influence of varied expansion device capacity, refrigerant charge and ambient temperature’, Int. J. Refrig., 2006, 29, (5), pp. 789798.
    22. 22)
      • 35. Mahmood, H., Michaelson, D., Jiang, J.: ‘A power management strategy for PV/battery hybrid systems in islanded microgrids’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (4), pp. 870882. doi: 10.1109/JESTPE.2014.2334051.
    23. 23)
      • 50. Niro, G., Salles, D., Alcântara, M.V., et al: ‘Large-scale control of domestic refrigerators for demand peak reduction in distribution systems’, Electr. Power Syst. Res., 2013, 100, pp. 3442.
    24. 24)
      • 38. Voulis, N., Warnier, M., Brazier, F.M.: ‘Impact of service sector loads on renewable resource integration’, Appl. Energy, 2017, 205, (Supplement C), pp. 13111326.
    25. 25)
      • 13. Luo, X., Wang, J., Dooner, M., et al: ‘Overview of current development in electrical energy storage technologies and the application potential in power system operation’, Appl. Energy, 2015, 137, pp. 511536.
    26. 26)
      • 27. Pipattanasomporn, M., Kuzlu, M., Rahman, S., et al: ‘Load profiles of selected major household appliances and their demand response opportunities’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 742750.
    27. 27)
      • 55. Mohammadzaheri, M., Chen, L., Grainger, S.: ‘A critical review of the most popular types of neuro control’, Asian J. Control, 2012, 14, (1), pp. 111.
    28. 28)
      • 51. Stadler, M., Krause, W., Sonnenschein, M., et al: ‘Modelling and evaluation of control schemes for enhancing load shift of electricity demand for cooling devices’, Environ. Model. Softw., 2009, 24, (2), pp. 285295.
    29. 29)
      • 28. Lu, N.: ‘An evaluation of the HVAC load potential for providing load balancing service’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12631270.
    30. 30)
      • 7. Adefarati, T., Bansal, R.: ‘Integration of renewable distributed generators into the distribution system: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 873884.
    31. 31)
      • 58. Shanmuganathan, S., Samarasinghe, S.: ‘Artificial neural network modelling’, vol. 628 (Springer, Switzerland, 2016).
    32. 32)
      • 4. Wu, J., Botterud, A., Mills, A., et al: ‘Integrating solar PV (photovoltaics) in utility system operations: analytical framework and arizona case study’, Energy, 2015, 85, pp. 19.
    33. 33)
      • 45. CNET, Samsung's family hub smart fridge gets new features, 2017.
    34. 34)
      • 12. Ahmad Hamidi, S., Ionel, D.M., Nasiri, A.: ‘Modeling and management of batteries and ultracapacitors for renewable energy support in electric power systems – an overview’, Electr. Power Compon. Syst., 2015, 43, (12), pp. 14341452.
    35. 35)
      • 3. Yole Développement: ‘Energy management for smart grid, cities and buildings: opportunities for battery electricity storage solutions’, May 2015. Available at https://www.slideshare.net/YoleDeveloppement/yole-stationary- batteryenergystoragesolutionsmay2015sample.html, accessed 27 March 2017.
    36. 36)
      • 60. Kumar, K.N., Tseng, K.J.: ‘Impact of demand response management on chargeability of electric vehicles’, Energy, 2016, 111, pp. 190196.
    37. 37)
      • 21. Kandasamy, N.K., Kandasamy, K., Tseng, K.J.: ‘Loss-of-life investigation of EV batteries used as smart energy storage for commercial building based solar photovoltaic systems’, IET Electr. Syst. Transp., 2017, 7, (3), pp. 223-229.
    38. 38)
      • 57. Youssef, A., El-Telbany, M., Zekry, A.: ‘The role of artificial intelligence in photovoltaic systems design and control: a review’, Renew. Sust. Energy Rev., 2017, 78, pp. 7279.
    39. 39)
      • 52. Mathieu, J.L., Callaway, D.S.: ‘The value of real-time data in controlling electric loads for demand response’. Carnegie Mellon Conf. on the Electricity Industry: Data Driven Sustainable Energy Systems, Pittsburgh, USA., 2012, pp. 1214.
    40. 40)
      • 2. Wong, R.: ‘Solar potential of HDB blocks in Singapore’, Energy Studies Inst. Bull. Energy Trends Dev., 2011, 4, (3), pp. 67.
    41. 41)
      • 31. Tindemans, S.H., Trovato, V., Strbac, G.: ‘Decentralized control of thermostatic loads for flexible demand response’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 16851700.
    42. 42)
      • 48. Angeli, D., Kountouriotis, P.-A.: ‘A stochastic approach to ‘dynamic-demand’ refrigerator control’, IEEE Trans. Control Syst. Technol., 2012, 20, (3), pp. 581592.
    43. 43)
      • 23. Lu, N., Vanouni, M.: ‘Passive energy storage using distributed electric loads with thermal storage’, J. Modern Power Syst. Clean Energy, 2013, 1, (3), pp. 264274.
    44. 44)
      • 1. EDB, 900 HDB blocks, eight govt sites to be equipped with solar panels. Available at https://www.edb.gov.sg/content/edb/en/news-and-events/news/2015-news/hdblaunches-first-tender-under-edb-led-programme-solarnova.html, accessed 27 March 2017.
    45. 45)
      • 15. Zhang, N., Lu, X., McElroy, M.B., et al: ‘Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage’, Appl. Energy, 2016, 184, (Supplement C), pp. 987994.
    46. 46)
      • 29. Solano, J., Olivieri, L., Caamaño-Martín, E.: ‘Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential building through intelligent control’, Appl. Energy, 2017, 206, (Supplement C), pp. 249266.
    47. 47)
      • 59. Ito, M., Takano, A., Shinji, T., et al: ‘Electricity adjustment for capacity market auction by a district heating and cooling system’, Appl. Energy, 2017, 206, (Supplement C), pp. 623633.
    48. 48)
      • 6. Vegunta, S.C., Twomey, P., Randles, D.: ‘Impact of PV and load penetration on LV network voltages and unbalance and potential solutions’.
    49. 49)
      • 5. Jenkins, N.: ‘Distributed generation’ (The Institution of Engineering and Technology, Stevenage, UK, 2010).
    50. 50)
      • 34. Arteconi, A., Hewitt, N.J., Polonara, F.: ‘State of the art of thermal storage for demand-side management’, Appl. Energy, 2012, 93, pp. 371389.
    51. 51)
      • 10. Barelli, L., Desideri, U., Ottaviano, A.: ‘Challenges in load balance due to renewable energy sources penetration: the possible role of energy storage technologies relative to the Italian case’, Energy, 2015, 93, pp. 393405.
    52. 52)
      • 62. Oudalov, A., Chartouni, D., Ohler, C.: ‘Optimizing a battery energy storage system for primary frequency control’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 12591266.
    53. 53)
      • 39. Hoke, A., Maksimović, D.: ‘Active power control of photovoltaic power systems’. 2013 1st IEEE Conf. on Technologies for Sustainability (SusTech), Portland, OR, USA, 2013, pp. 7077. doi:10.1109/SusTech.2013.6617300.
    54. 54)
      • 33. Nayyar, A., Negrete-Pincetic, M., Poolla, K., et al: ‘Duration-differentiated energy services with a continuum of loads’, IEEE Trans. Control Netw. Syst., 2016, 3, (2), pp. 182191.
    55. 55)
      • 30. Hao, H., Sanandaji, B.M., Poolla, K., et al: ‘Aggregate flexibility of thermostatically controlled loads’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 189198.
    56. 56)
      • 19. Lizana, J., Chacartegui, R., Barrios-Padura, A., et al: ‘Advances in thermal energy storage materials and their applications towards zero energy buildings: a critical review’, Appl. Energy, 2017, 203, (Supplement C), pp. 219239.
    57. 57)
      • 61. Waag, W., Käbitz, S., Sauer, D.U.: ‘Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application’, Appl. Energy, 2013, 102, pp. 885897.
    58. 58)
      • 11. Denholm, P., Ela, E., Kirby, B., et al: ‘The role of energy storage with renewable electricity generation’.
    59. 59)
      • 56. Wang, Z., Srinivasan, R.S.: ‘A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models’, Renew. Sust. Energy Rev., 2017, 75, pp. 796808.
    60. 60)
      • 25. Husen, S.A., Pandharipande, A., Tolhuizen, L., et al: ‘Lighting systems control for demand response’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 2012, pp. 16.
    61. 61)
      • 47. Zehir, M.A., Bagriyanik, M.: ‘Demand side management by controlling refrigerators and its effects on consumers’, Energy Convers. Manage., 2012, 64, pp. 238244.
    62. 62)
      • 44. Meng, K., Dong, Z.Y., Xu, Z., et al: ‘Coordinated dispatch of virtual energy storage systems in smart distribution networks for loading management’, IEEE Trans. Syst. Man Cybern., Syst., 2017, Early Access: DOI: 10.1109/TSMC.2017.2690911.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-stg.2018.0001
Loading

Related content

content/journals/10.1049/iet-stg.2018.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address