Efficient estimation algorithm for ARMA, exponential and other trigonometric model with quantum constraints

Access Full Text

Efficient estimation algorithm for ARMA, exponential and other trigonometric model with quantum constraints

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new estimation algorithm has been developed here, which refers to covariance shaping least square estimation (CSLS) based on the quantum mechanical concepts and constraints. The algorithm has been applied to ARMA, complex exponential, sine, cosine and sinc models with various parameter values. The same models can be applied with white Gaussian noise, which estimates the bias in the parameter and the validity of the uncertainty can be analysed. For optimal quantum measurement design, the performance of the CSLS estimator is developed, discussed and compared with LS, Shrunken and Ridge estimators for different applications. The results suggest that the CSLS estimator can outperform from others at low-to-moderate signal-to-noise ratio.

Inspec keywords: signal processing; autoregressive moving average processes; least squares approximations; maximum likelihood estimation; covariance analysis; quantum computing; AWGN

Other keywords: maximum a-posteriori estimator; optimal quantum measurement design; trigonometric model; covariance shaping least square estimation; parameter bias estimation algorithm; exponential model; quantum signal processing; CSLS estimator; quantum mechanical constraint; white Gaussian noise; ARMA; signal-to-noise ratio

Subjects: Interpolation and function approximation (numerical analysis); Other topics in statistics; Quantum computing theory; Interpolation and function approximation (numerical analysis); Signal processing and detection; Other topics in statistics; Signal processing theory

References

    1. 1)
      • Don Johnson Signal Parameter Estimation, Version 1.4: Aug. 18, 2003. The Connexions Project and licensed under the Creative Commons Attribution License Connexions module: m1126.
    2. 2)
      • M.H.J. Gruber . (1990) Regression estimators: a comparative study.
    3. 3)
      • A.E. Hoerl , R.W. Kennard . Ridge regression: biased estimation for nonorthogonal problems. Tachometer , 55 - 67
    4. 4)
      • A. Beck , Y.C. Eldar , A. Ben-Tal . Minimax mean-squared error estimation of multichannel signals. SIAM J. Matrix Anal. Appl. , 2 , 712 - 730
    5. 5)
      • Y.C. Eldar , A. Ben-Tal , A. Nemirovski . Linear minimax regret estimation of deterministic parameters with bounded data uncertainties. IEEE Trans. Signal Process. , 8 , 2177 - 2188
    6. 6)
      • Y.C. Eldar , A. Ben-Tal , A. Nemirovski . Robust mean-squared error estimation in the presence of model uncertainties. IEEE Trans. Signal Process , 1 , 168 - 181
    7. 7)
      • Vorobyov, S.A., Eldar, Y.C., Gershman, A.B.: `Probabilistically constrained estimation of random parameters with unknown distribution', Proc. 4th IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM'2006, 12–14 July 2006, USA, p. 404–408.
    8. 8)
      • M.S. Pinsker . Optimal filtering of square-integrable signals in Gaussian noise. Problems Inform. Trans. , 120 - 133
    9. 9)
      • Y.C. Eldar . Comparing between estimation approaches: admissible and dominating linear estimators. IEEE Trans. Signal Process. , 5 , 1689 - 1702
    10. 10)
      • S.M. Kay . (1993) Fundamentals of statistical signal processing: estimation theory.
    11. 11)
      • O. Dabeer , A. Karnik . Consistent signal parameter estimation with 1-bit dithered sampling.
    12. 12)
      • J.E. Buck . (1985) On Stein estimators: “inadmissibility” of admissibility as a criterion for selecting estimators.
    13. 13)
      • Y.C. Eldar , A.V. Oppenheim . Quantum signal processing. Signal Process. Mag. , 12 - 32
    14. 14)
      • J. Pilz . Minimax linear regression estimation with symmetric parameter restrictions. J. Stat. Planning Inferen. , 297 - 318
    15. 15)
      • L.S. Mayer , T.A. Willke . On biased estimation in linear models. Technometrics , 497 - 508
    16. 16)
      • Wiesel, A., Eldar, Y.C.: `Maximum likelihood estimation in random linear models: generalizations and performance analysis', Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2006), May 2006, France, 5, p. 993–996.
    17. 17)
      • Y.C. Eldar , A.V. Oppenheim . MMSE whitening and subspace whitening. IEEE Trans. Inform. Theory , 1846 - 1851
    18. 18)
      • A. Benavoli , L. Chisci , A. Farina . Estimation of constrained parameters with guaranteed MSE improvement. IEEE Trans. Signal Process. , 4 , 1264 - 1274
    19. 19)
      • A.N. Tikhonov , V.Y. Arsenin . (1977) Solution of Ill-posed problems.
    20. 20)
      • L.S. Mayer , T.A. Willke . On biased estimation in linear models. Tachometer , 497 - 508
    21. 21)
      • Y.C. Eldar . (2001) Quantum signal processing.
    22. 22)
      • D.C. Griffiths . (1995) Introduction to quantum mechanics.
    23. 23)
      • Y.C. Eldar , A.V. Oppenheim . Covariance shaping least-squares estimation. IEEE Trans. Signal Process. , 3 , 686 - 697
    24. 24)
      • Z. Ben-Haim , Y.C. Eldar . Maximum set estimators with bounded estimation error. IEEE Trans. Signal Process. , 8 , 3172 - 3182
    25. 25)
      • A. Beck , A. Ben-Tal , Y.C. Eldar . (2005) Robust mean-squared error estimation of multiple signals in linear systems affected by model and noise uncertainties, Math Prog., B.
    26. 26)
      • Y.C. Eldar , A.V. Oppenheim . Covariance shaping least square estimation. IEEE Trans. Signal Process. , 686 - 697
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr_20070175
Loading

Related content

content/journals/10.1049/iet-spr_20070175
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading