http://iet.metastore.ingenta.com
1887

Computer cryptography through performing chaotic modulation on intrinsic mode functions with non-dyadic number of encrypted signals

Computer cryptography through performing chaotic modulation on intrinsic mode functions with non-dyadic number of encrypted signals

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a computer cryptographic system through performing the chaotic modulation on the intrinsic mode functions with a non-dyadic number of the encrypted signals. First, the empirical mode decomposition is applied to an input signal to generate a set of intrinsic mode functions. Then, these intrinsic mode functions are categorised into two groups of signals. Next, a type 1 polyphase is employed to represent each group of signals. These polyphase components are combined to generate a non-dyadic number of polyphase components. Second, the chaotic modulation is applied to these combined polyphase components for performing the encryption in the time frequency domain. To reconstruct the original signal, first, the chaotic demodulation is applied to the encrypt components to reconstruct the combined polyphase components. Then, the original groups of intrinsic mode functions are reconstructed through the type 2 polyphase representation and the original signal is reconstructed. Compared with the chaotic filter bank system, the proposed approach enjoys the nonlinear and adaptive property of the empirical mode decomposition. Therefore, a better security performance can be achieved particularly for the non-stationary signals. Compared with the conventional chaotic modulation approach, the proposed system allows performing the cryptography in the time frequency domain.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5256
Loading

Related content

content/journals/10.1049/iet-spr.2018.5256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address