Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Automated QRS complex detection using MFO-based DFOD

This study proposes a heuristic approach for designing highly efficient, infinite impulse response (IIR) type Digital First-Order Differentiator (DFOD) by employing a nature-inspired evolutionary algorithm called Moth-Flame Optimisation (MFO) for the detection of the QRS complexes in the electrocardiogram (ECG) signal. The designed DFOD is used in the pre-processing stage of the proposed QRS complex detector, to generate feature signals corresponding to each R-peak by efficiently differentiating the ECG signal. The generated feature signal is employed to detect the precise instants of the R-peaks by using a Hilbert transform-based R-peak detection logic. The performance efficiency of the proposed QRS complex detector is evaluated by using all the first channel records of the MIT/BIH arrhythmia database (MBDB), regarding the standard performance evaluation metrics. The proposed approach has resulted in Sensitivity (Se) of 99.93%, Positive Predictivity (PP) of 99.92%, Detection Error Rate (DER) of 0.15%, and QRS Detection Rate (QDR) of 99.92%. Performance comparison with the recent works justifies the superiority of the proposed approach.

References

    1. 1)
      • 13. Dohare, A.K., Kumar, V., Kumar, R.: ‘An efficient new method for the detection of QRS in electrocardiogram’, Comput. Electr. Eng., 2014, 40, (5), pp. 17171730.
    2. 2)
      • 1. Meidani, M., Mashoufi, B.: ‘Introducing new algorithms for realizing an FIR filter with less hardware to eliminate power line interference from the ECG signal’, IET Signal Process., 2016, 10, (7), pp. 709716.
    3. 3)
      • 19. Nallathambi, G., Príncipe, J.C.: ‘Integrate and fire pulse train automaton for QRS detection’, IEEE Trans. Biomed. Eng., 2014, 61, (2), pp. 317326.
    4. 4)
      • 39. Gupta, M., Relan, B., Yadav, R., et al: ‘Wideband digital integrators and differentiators designed using particle swarm optimization’, IET Signal Process., 2014, 8, (6), pp. 668679.
    5. 5)
      • 5. Min, Y. J., Kim, H. K., Kang, Y.R., et al: ‘Design of wavelet-based ECG detector for implantable cardiac pacemakers’, IEEE Trans. Biomed. Circuits Syst., 2013, 7, (4), pp. 426436.
    6. 6)
      • 40. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm’, Soft Comput., 2017, 22, (11), pp. 37573783. doi: 10.1007/s00500-017-2595-6.
    7. 7)
      • 42. Goldberger, A.L., Amaral, L.A.N., Glass, L., et al: ‘Physiobank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals’, Circulation, 2000, 101, (23), pp. e215e220.
    8. 8)
      • 8. Bouaziz, F., Boutana, D., Benidir, M.: ‘Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies’, IET Signal Process., 2014, 8, (7), pp. 774782.
    9. 9)
      • 36. Al-Alaoui, M.A.: ‘Novel IIR differentiator from the Simpson integration rule’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1994, 41, (2), pp. 186187.
    10. 10)
      • 18. Arbateni, K., Bennia, A.: ‘Sigmoidal radial basis function ANN for QRS complex detection’, Neurocomputing, 2014, 145, (5), pp. 438450.
    11. 11)
      • 41. Mirjalili, S.: ‘Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm’, Knowl.-Based Syst., 2015, 89, pp. 228249.
    12. 12)
      • 7. Rakshit, M., Das, S.: ‘An efficient wavelet-based automated R-peaks detection method using Hilbert transform’, Biocybern. Biomed. Eng., 2017, 37, (3), pp. 566577.
    13. 13)
      • 27. Arzeno, N.M., Deng, Z.D., Poon, C.S.: ‘Analysis of first-derivative based QRS detection algorithms’, IEEE Trans. Biomed. Eng., 2008, 55, (2), pp. 478484.
    14. 14)
      • 12. Slimane, Z.E.H., Nait-Ali, A.: ‘QRS complex detection using empirical mode decomposition’, Digit. Signal Process., 2010, 20, pp. 12211228.
    15. 15)
      • 21. Ning, X., Selesnick, I.W.: ‘ECG enhancement and QRS detection based on sparse derivative’, Biomed. Signal Proc. Control, 2013, 8, pp. 713723.
    16. 16)
      • 32. Saha, S.K., Kar, R., Mandal, D., et al: ‘Seeker optimization algorithm: application to the design of linear phase finite impulse response filter’, IET Signal Process., 2012, 6, (8), pp. 763771.
    17. 17)
      • 15. Phukpattaranont, P.: ‘QRS detection algorithm based on the quadratic filter’, Expert Syst. Appl., 2015, 42, (11), pp. 48674877.
    18. 18)
      • 34. Mitra, S.K.: ‘Digital signal processing’ (McGraw-Hill, New York, 2006, 3rd edn.).
    19. 19)
      • 29. Hamilton, P.S., Tompkins, W.J.: ‘Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database’, IEEE Trans. Biomed. Eng., 1986, 33, (12), pp. 11571164.
    20. 20)
      • 20. Ravanshad, N., Dehsorkh, H.R., Lotfi, R., et al: ‘A level-crossing based QRS-detection algorithm for wearable ECG sensors’, IEEE. J. Biomed. Health. Inform., 2014, 18, (1), pp. 183192.
    21. 21)
      • 24. Sharma, T., Sharma, K.K.: ‘QRS complex detection in ECG signals using locally adaptive weighted total variation denoising’, Comput. Biol. Med., 2017, 87, pp. 187199.
    22. 22)
      • 3. Friesen, G.M., Jannett, T.C., Jadallah, M.A., et al: ‘A comparison of the noise sensitivity of nine QRS detection algorithms’, IEEE Trans. Biomed. Eng., 1990, 37, (1), pp. 8598.
    23. 23)
      • 17. Zhang, F., Lian, Y.: ‘QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks’, IEEE Trans. Biomed. Circuits Syst., 2009, 3, (4), pp. 220228.
    24. 24)
      • 25. Castells-Rufas, D., Carrabina, J.: ‘Simple and real-time QRS detector with the MaMeMi filter’, Biomed. Signal Proc. Control, 2015, 21, pp. 137145.
    25. 25)
      • 22. Ramakrishnan, A.G., Prathosh, A.P., Ananthapadmanabha, T.V.: ‘Threshold-independent QRS detection using the dynamic plosion index’, IEEE Signal Process. Lett., 2014, 21, (5), pp. 554558.
    26. 26)
      • 11. Jain, S., Kumar, A., Bajaj, V.: ‘Techniques for QRS complex detection using particle swarm optimization’, IET Sci. Meas. Technol., 2016, 10, (6), pp. 626636.
    27. 27)
      • 2. Yadav, S.K., Sinha, R., Bora, P.K.: ‘Electrocardiogram signal denoising using non-local wavelet transform domain filtering’, IET Signal Process., 2015, 9, (1), pp. 8896.
    28. 28)
      • 28. Manikandan, M.S., Soman, K.P.: ‘A novel method for detecting R-peaks in electrocardiogram (ECG) signal’, Biomed. Signal. Process. Control., 2012, 7, (2), pp. 118128.
    29. 29)
      • 37. Al-Alaoui, M.A.: ‘Class of digital integrators and differentiators’, IET Signal Process., 2010, 5, (2), pp. 251260.
    30. 30)
      • 9. Zidelmal, Z., Amirou, A., Adnane, M., et al: ‘QRS detection based on wavelet coefficients’, Comput. Methods Programs Biomed., 2012, 107, (3), pp. 490496.
    31. 31)
      • 38. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband IIR fractional order digital integrators using colliding bodies optimization algorithm’, IET Signal Process., 2016, 10, (9), pp. 11351156.
    32. 32)
      • 14. Afonso, V.X., Tompkins, W.J., Nguyen, T.Q., et al: ‘ECG beat detection using filter banks’, IEEE Trans. Biomed. Eng., 1999, 46, (2), pp. 192201.
    33. 33)
      • 10. Deepu, C.J., Lian, Y.: ‘A joint QRS detection and data compression scheme for wearable sensors’, IEEE Trans. Biomed. Eng., 2015, 62, (1), pp. 165175.
    34. 34)
      • 4. Kohler, B.U., Hennig, C., Orglmeister, R.: ‘The principles of software QRS detection’, IEEE Eng. Med. Biol. Mag., 2002, 21, (1), pp. 4257.
    35. 35)
      • 35. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal and accurate design of fractional order digital differentiator – an evolutionary approach’, IET Signal Process., 2017, 11, (2), pp. 181196.
    36. 36)
      • 26. Pan, J., Tompkins, W.J.: ‘A real-time QRS detection algorithm’, IEEE Trans. Biomed. Eng., 1985, 32, (3), pp. 230236.
    37. 37)
      • 30. Sabherwal, P., Agrawal, M., Singh, L.: ‘Automatic detection of the R peaks in single-lead ECG signal’, Circuits Syst. Signal Process., 2017, 36, (11), pp. 46374652. doi: 10.1007/s00034-017-0537-2.
    38. 38)
      • 31. Benmalek, M., Charef, A.: ‘Digital fractional order operators for R-wave detection in electrocardiogram signal’, IET Signal Process., 2008, 3, (5), pp. 381391.
    39. 39)
      • 33. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband digital integrators and differentiators using harmony search algorithm’, Int. J. Numer. Model., Electron. Netw. Devices Fields, 2017, 30, p. e2203. doi: 10.1002/jnm.2203.
    40. 40)
      • 43. Moody, G.B., Mark, R.G.: ‘The impact of MIT-BIH arrhythmia database’, IEEE Eng. Med. Biol. Mag., 2001, 20, (3), pp. 4550.
    41. 41)
      • 6. Leong, C.I., Mak, P.I., Lam, C.P., et al: ‘A 0.83 - µW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35 - µm CMOS’, IEEE Trans. Biomed. Circuits Syst., 2012, 6, (6), pp. 586595.
    42. 42)
      • 23. Pandit, D., Zhang, L., Liu, C., et al: ‘A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm’, Comput. Methods Programs Biomed., 2017, 144, pp. 6175.
    43. 43)
      • 16. Yazdani, S., Vesin, J.M.: ‘Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology’, Digit. Signal Process., 2016, 56, pp. 100109.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5230
Loading

Related content

content/journals/10.1049/iet-spr.2018.5230
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address