http://iet.metastore.ingenta.com
1887

Adaptive regularisation for normalised subband adaptive filter: mean-square performance analysis approach

Adaptive regularisation for normalised subband adaptive filter: mean-square performance analysis approach

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The normalised subband adaptive filter (NSAF) is a useful adaptive filter, which improves the convergence rate compared with the normalised least mean-square algorithm. Most analytical results of the NSAF set the regularisation parameter set to zero or present only steady-state mean-square error performance of the regularised NSAF (-NSAF). This study presents a mean-square performance analysis of -NSAF, which analyses not only convergence behaviour but also steady-state behaviour. Furthermore, a novel adaptive regularisation for NSAF (AR-NSAF) is also developed based on the proposed analysis approach. The proposed AR-NSAF selects the optimal regularisation parameter that leads to improving the performance of the adaptive filter. Simulation results comparing the proposed analytical results with the results achieved from the simulation are presented. In addition, these results verify that the proposed AR-NSAF outperforms the previous algorithms in a system-identification and acoustic echo-cancellation scenarios.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5165
Loading

Related content

content/journals/10.1049/iet-spr.2018.5165
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address