Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Sparse non-negative signal reconstruction using fraction function penalty

Many practical problems in the real world can be formulated as the non-negative -minimisation problems, which seek the sparsest non-negative signals to underdetermined linear equations. They have been widely applied in signal and image processing, machine learning, pattern recognition and computer vision. Unfortunately, this non-negative -minimisation problem is non-deterministic polynomial hard (NP-hard) because of the discrete and discontinuous nature of the -norm. Inspired by the good performances of the fraction function in the authors’ former work, in this paper, the authors replace the -norm with the non-convex fraction function and study the minimisation problem of the fraction function in recovering the sparse non-negative signal from an underdetermined linear equation. They discuss the equivalence between non-negative -minimisation problem and non-negative fraction function minimisation problem, and the equivalence between non-negative fraction function minimisation problem and regularised non-negative fraction function minimisation problem. It is proved that the optimal solution to the non-negative -minimisation problem could be approximately obtained by solving their regularised non-negative fraction function minimisation problem if some specific conditions are satisfied. Then, they propose a non-negative iterative thresholding algorithm to solve their regularised non-negative fraction function minimisation problem. At last, numerical experiments on some sparse non-negative signal recovery problems are reported.

References

    1. 1)
      • 4. Donoho, D.L., Tanner, J.: ‘Counting the faces of randomly projected hypercubes and orthants with applications’, Discrete Comput. Geom., 2010, 43, (3), pp. 522541.
    2. 2)
      • 13. Mangasarian, O.L.: ‘Minimum-support solutions of polyhedral concave programs’, Optimization, 1999, 45, (1–4), pp. 149162.
    3. 3)
      • 5. Khajehnejad, M.A., Dimakis, A.G., Xu, W.Y., et al: ‘Sparse recovery of non-negative signals with minima expansion’, IEEE Trans. Signal Process., 2011, 59, (1), pp. 196208.
    4. 4)
      • 7. Vo, N., Moran, B., Challa, S.: ‘Non-negative-least-square classifier for face recognition’. Proc. Sixth Int. Symp. Neural Networks: Advances Neural Networks, China, 2009, vol. 5553, pp. 449456.
    5. 5)
      • 22. Li, H.Y., Zhang, Q., Cui, A.G., et al: ‘Minimization of fraction function penalty in compressed sensing’. Available at URL https://arxiv.org/pdf/1705.06048, accessed 2017.
    6. 6)
      • 18. Zhao, Y.B.: ‘Equivalence and strong equivalence between the sparsest and least l1-norm non-negative solutions of linear systems and their applications’, J. Oper. Res. Soc. China, 2014, 2, (2), pp. 171193.
    7. 7)
      • 2. Bardsley, J.M., Nagy, J.G.: ‘Covariance-preconditioned iterative methods for non-negativity constrained astronomical imaging’, SIAM J. Matrix Anal. Appl., 2006, 27, (4), pp. 11841197.
    8. 8)
      • 27. Foucart, S., Rauhut, H.: ‘A mathematical introduction to compressive sensing’ (Springer, New York, 2013).
    9. 9)
      • 6. ÓGrady, P.D., Rickard, S.T.: ‘Recovery of non-negative signals from compressively samples observations via non-negative quadratic programming’. Available at URL https://www.researchgate.net/publication/252320106, accessed 2009.
    10. 10)
      • 8. Wang, M., Xu, W.Y., Tang, A.: ‘A unique non-negative solution to an underdetermined system: from vectors to matrices’, IEEE Trans. Signal Process., 2011, 59, (3), pp. 10071016.
    11. 11)
      • 11. He, R., Zheng, W.S., Hu, B.G., et al: ‘Non-negative sparse coding for discriminative semi-supervised learning’. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), USA, 2011, vol. 42, (7), pp. 28492856.
    12. 12)
      • 26. Schwarz, G.: ‘Estimating the dimension of a model’, Ann. Stat., 1978, 6, (2), pp. 461464.
    13. 13)
      • 3. Bruckstein, A.M., Elad, M., Zibulevsky, M.: ‘On the uniqueness of non-negative sparse solutions to underdetermined systems of equations’, IEEE Trans. Inf. Theory, 2008, 54, (11), pp. 48134820.
    14. 14)
      • 16. Elad, M.: ‘Sparse and redundant representations: from theory to applications in signal and image processing’ (Springer, New York, 2010).
    15. 15)
      • 17. Theodoridis, S., Kopsinis, Y., Slavakis, K.: ‘Sparsity-aware learning and compressed sensing: an overview’. Available at URL https://arxiv.org/pdf/1211.5231, accessed 2012.
    16. 16)
      • 9. Bradley, P.S., Mangasarian, O.L., Rosen, J.B.: ‘Parsimonious least norm approximation’, Comput. Optim. Appl., 1998, 11, pp. 521.
    17. 17)
      • 12. Mangasarian, O.L.: ‘Machine learning via polyhedral concave minimization’, in Fischer, H., Riedmueller, B., Schaeffler, S. (Eds.): Applied Mathematics and Parallel Computing: Festschrift for Klaus Ritter, (Springer, Heidelberg, 1996), pp. 175188.
    18. 18)
      • 21. Strayer, J.K.: ‘Linear programming and its applications’ (Springer, New York, 1989, 1st edn.).
    19. 19)
      • 14. Szlam, A., Guo, Z.H., Osher, S.: ‘A split Bregman method for non-negative sparsity penalized least squares with applications to hyperspectral demixing’. Proc. 2010 IEEE 17th Int. Conf. Image Processing, 2010, pp. 19171920.
    20. 20)
      • 10. Bradley, P.S., Fayyad, U.M., Mangasarian, O.L.: ‘Mathematical programming for data mining: formulations and challenges’, INFORMS J. Comput., 1999, 11, pp. 217238.
    21. 21)
      • 1. Donoho, D.L., Tanner, J.: ‘Sparse nonnegative solution of underdetermined linear equations by linear programming’, Proc. Natl. Acad. Sci. USA, 2005, 102, (27), pp. 94469451.
    22. 22)
      • 23. Cui, A.G., Peng, J.G., Li, H.Y., et al: ‘Affine matrix rank minimization problem via non-convex fraction function penalty’, J. Comput. Appl. Math., 2018, 336, pp. 353374.
    23. 23)
      • 15. Bruckstein, A.M., Donoho, D.L., Elad, M.: ‘From sparse solutions of systems of equations to sparse modelling of signals and images’, SIAM Rev., 2009, 51, (1), pp. 3481.
    24. 24)
      • 20. Zhao, Y.B.: ‘RSP-based analysis for sparsest and least l1-norm solutions to underdetermined linear systems’, IEEE Trans. Signal Process., 2013, 61, (22), pp. 57775788.
    25. 25)
      • 24. Geman, D., Reynolds, G.: ‘Constrained restoration and the recovery of discontinuities’, IEEE Trans. Pattern Anal. Mach. Intell., 1992, 14, (3), pp. 367383.
    26. 26)
      • 19. Donoho, D.L., Tanner, J.: ‘Sparse non-negative solutions of underdetermined linear equations by linear programming’, Proc. Natl. Acad. Sci. USA, 2005, 102, (27), pp. 94469451.
    27. 27)
      • 25. Nikolova, M.: ‘Local strong homogeneity of a regularized estimator’, SIAM J. Appl. Math., 2000, 61, (2), pp. 633658.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2018.5056
Loading

Related content

content/journals/10.1049/iet-spr.2018.5056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address