access icon free Radar pulse completion and high-resolution imaging with SAs based on reweighted ANM

In actual condition, array elements deficiency or transmission errors lead to incomplete data, which is called sparse aperture (SA) data. In inverse synthetic aperture radar (ISAR) imaging, this large-gaped data produces poor-quality ISAR images when using traditional range–Doppler algorithm. Recently, imaging algorithms based on compressed sensing (CS) theory alleviate this problem effectively because CS theory indicates that sparse signal can be reconstructed from incomplete measurements. However, the basis mismatch problem in CS-based algorithms may degrade the ISAR image. In this study, a reweighted atomic-norm minimisation (ANM) (RAM)-based imaging method is proposed. RAM is a gridless sparse method, which can enhance sparsity and resolution. RAM formulates an optimisation problem and iteratively carries out ANM with a sound reweighting strategy. By reformulating the RAM as a semi-definite programme, the echoes with full aperture (FA) are reconstructed from SA data. After that, ISAR imaging with the reconstructed FA data is achieved via the conventional azimuth compression method. Simulated and real data results demonstrate the effectiveness and superiority of the proposed method.

Inspec keywords: minimisation; iterative methods; radar resolution; mathematical programming; image reconstruction; image resolution; Doppler radar; compressed sensing; synthetic aperture radar; radar imaging

Other keywords: transmission error; gridless sparse method; optimisation problem; array element deficiency; reweighted ANM; sound reweighting strategy; high-resolution imaging; ISAR imaging; compressed sensing theory; radar pulse completion; reweighted atomic-norm minimisation; RAM-based imaging method; azimuth compression method; range-Doppler algorithm; semidefinite programming; SA data; full aperture data; inverse synthetic aperture radar imaging; FA data; sparse signal reconstruction; CS theory; sparse aperture data

Subjects: Optimisation techniques; Radar equipment, systems and applications; Optical, image and video signal processing; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 16. Chandrasekaran, V., Recht, B., Parrilo, P.A., et al: ‘The convex geometry of linear inverse problems’, Found. Comput. Math., 2012, 12, (6), pp. 805849.
    2. 2)
      • 4. Khwaja, A.S., Zhang, X.P.: ‘Compressed sensing ISAR reconstruction in the presence of rotational acceleration’, IEEE J. Sel. Top. Appl. Earth Observations Remote Sens., 2014, 7, (7), pp. 29572970.
    3. 3)
      • 7. Wang, Y., Zhao, B., Jiang, Y.: ‘Inverse synthetic aperture radar imaging of targets with complex motion based on cubic chirplet decomposition’, IET Signal Process., 2015, 9, (5), pp. 419429.
    4. 4)
      • 1. Rao, W., Li, G., Wang, X., et al: ‘Parametric sparse representation method for ISAR imaging of rotating targets’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (2), pp. 910919.
    5. 5)
      • 11. Zhang, L., Qiao, Z., Xing, M., et al: ‘High-resolution ISAR imaging by exploiting sparse apertures’, IEEE Trans. Antennas Propag., 2012, 60, (2), pp. 9971008.
    6. 6)
      • 5. Candès, E.J., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509.
    7. 7)
      • 10. Liu, H., Jiu, B., Liu, H., et al: ‘Super-resolution ISAR imaging based on sparse Bayesian learning’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (8), pp. 50055013.
    8. 8)
      • 15. Candès, E.J., Fernandez-Granda, C.: ‘Towards a mathematical theory of super-resolution’, Commun. Pure Appl. Math., 2014, 67, (6), pp. 906956.
    9. 9)
      • 12. Xu, G., Xing, M., Xia, X., et al: ‘High-resolution inverse synthetic aperture radar imaging and scaling with sparse aperture’, IEEE J. Sel. Top. Appl. Earth Observations Remote Sens., 2015, 8, (8), pp. 40104027.
    10. 10)
      • 17. Tang, G., Bhaskar, B.N., Shah, P., et al: ‘Compressed sensing off the grid’, IEEE Trans. Inf. Theory, 2013, 59, (11), pp. 74657490.
    11. 11)
      • 13. Hu, X., Tong, N., Zhang, Y., et al: ‘Moving target's HRRP synthesis with sparse frequency-stepped chirp signal via atomic norm minimization’, IEEE Signal Process. Lett., 2016, 23, (9), pp. 12121215.
    12. 12)
      • 19. Toh, K.C., Todd, M.J., Tütüncü, R.: ‘SDPT3 – a MATLAB software package for semidefinite programming’, Optim. Methods Softw., 1999, 11, (1-4), pp. 545581.
    13. 13)
      • 6. Wang, W., Pan, X., Liu, Y., et al: ‘Sub-Nyquist sampling jamming against ISAR with compressive sensing’, IEEE Sens. J., 2014, 14, (9), pp. 31313136.
    14. 14)
      • 20. Wipf, D.P., Rao, B.D.: ‘Sparse Bayesian learning for basis selection’, IEEE Trans. Signal Process., 2004, 52, (8), pp. 21532164.
    15. 15)
      • 8. Tomei, S., Bacci, A., Giusti, E., et al: ‘Compressive sensing based inverse synthetic radar imaging from incomplete data’, IET Radar Sonar Navig., 2016, 10, (2), pp. 386397.
    16. 16)
      • 3. He, X., Tong, N., Feng, W.: ‘High-resolution ISAR imaging of maneuvering targets based on the sparse representation of multiple column-sparse vectors’, Digit. Signal Process., 2016, 59, pp. 100105.
    17. 17)
      • 14. Chi, Y., Scharf, L., Pezeshki, A., et al: ‘Sensitivity to basis mismatch in compressed sensing’, IEEE Trans. Signal Process., 2011, 59, (5), pp. 21822195.
    18. 18)
      • 9. Qiu, W., Zhao, H., Zhou, J., et al: ‘High-resolution fully polarimetric ISAR imaging based on compressive sensing’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (10), pp. 61196131.
    19. 19)
      • 18. Yang, Z., Xie, L.: ‘Enhancing sparsity and resolution via reweighted atomic norm minimization’, IEEE Trans. Signal Process., 2016, 64, (4), pp. 9951006.
    20. 20)
      • 2. Bai, X., Tao, R., Wang, Z., et al: ‘ISAR imaging of a ship target based on parameter estimation of multicomponent quadratic frequency-modulated signals’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (2), pp. 14181429.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0366
Loading

Related content

content/journals/10.1049/iet-spr.2017.0366
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading