Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multiband-structured Kalman filter

The broadband Kalman filter (BKF) and general Kalman filter (GKF) have been proposed for the application of acoustic system identification. Here, the authors present a multiband-structured Kalman filter (MSKF) to speed up the convergence rate of BKF and GKF for highly correlated signal. A simplified version of MSKF (SMSKF) is also provided at the aim of reducing the complexity. It is shown that the BKF and GKF are the special cases of the proposed MSKF, and the SMSKF can be treated as the improved multiband-structured subband adaptive filter algorithm with a variable regularisation matrix. The low-complexity implementation of SMSKF, both in the fast filtering and matrix inversion operation, is discussed. Computer simulations confirm the performance advantage of the proposed algorithm.

References

    1. 1)
      • 24. Paleologu, C., Ciochină, S., Benesty, J.: ‘Double-talk robust VSS-NLMS algorithm for under-modeling acoustic echo cancellation’. Proc. IEEE ICASSP, Las Vegas, USA, 2008, pp. 245248.
    2. 2)
      • 25. Iqbal, M.A., Grant, S.L.: ‘Novel variable step size NLMS algorithms for echo cancellation’. Proc. IEEE ICASSP, Las Vegas, USA, 2008, pp. 241244.
    3. 3)
      • 37. Benesty, J., Paleologu, C., Ciochină, S.: ‘On regularization in adaptive filtering’, IEEE Trans. Audio, Speech, Lang. Process., 2011, 19, (6), pp. 17341742.
    4. 4)
      • 19. Sayed, A.H.: ‘Adaptive filters’ (Wiley, New York, 2008).
    5. 5)
      • 8. Ozeki, K., Umeda, T.: ‘An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties’, Electron. Commun. Jpn., 1984, 67-A, (5), pp. 1927.
    6. 6)
      • 35. Petraglia, M.R., Haddad, D.B., Marques, E.L.: ‘Affine projection subband adaptive filter with low computational complexity’, IEEE Trans. Circuits Syst. II, 2016, 63, (10), pp. 989993.
    7. 7)
      • 14. DeBrunner, V., DeBrunner, L.S., Wang, L.: ‘Sub-band adaptive filtering with delay compensation for active control’, IEEE Trans. Signal Process., 2004, 52, (10), pp. 29322937.
    8. 8)
      • 21. Burdisso, R., Vipperman, J., Fuller, C.: ‘Causality analysis of feedforward-controlled systems with broadband inputs’, J. Acoust. Soc. Amer., 1993, 94, (1), pp. 234242.
    9. 9)
      • 28. Gay, S.L., Tavathia, S.: ‘The fast affine projection algorithm’. Proc. IEEE ICASSP, Detroit, MI, USA, May 1995, pp. 30233026.
    10. 10)
      • 31. Liu, Q.G., Champagne, B., Ho, K.C.: ‘On the use of a modified fast affine projection algorithm in subbands for acoustic echo cancellation’. Proc. 1996 IEEE Digital Signal Processing Workshop, Loen, Norway, September 1996, pp. 354357.
    11. 11)
      • 11. De Courville, M., Duhamel, P.: ‘Adaptive filtering in subbands using a weighted criterion’, IEEE Trans. Signal Process., 1998, 46, (9), pp. 23592371.
    12. 12)
      • 20. Scharf, L.L.: ‘Statistical signal processing’ (Addison-Wesley, Reading, MA, USA, 1991).
    13. 13)
      • 2. Gibbs, B.P.: ‘Advanced Kalman filtering, least-squares and modeling: a practical handbook’ (John Wiley & Sons, Hoboken, NJ USA, 2011).
    14. 14)
      • 3. Hänsler, E., Schmidt, G.: ‘Acoustic echo and noise control: a practical approach’ (Wiley, Hoboken, NJ USA, 2004).
    15. 15)
      • 16. Yang, F., Wu, M., Ji, P., et al: ‘Low-complexity implementation of the improved multiband-structured subband adaptive filter algorithm’, IEEE Trans. Signal Process., 2015, 63, (19), pp. 51335148.
    16. 16)
      • 29. Ding, D.: ‘Fast affine projection adaptation algorithms with stable and robust symmetric linear system solvers’, IEEE Trans. Signal Process., 2007, 55, (5), pp. 17301740.
    17. 17)
      • 32. Paleologu, C., Ciochină, S., Benesty, J.: ‘An efficient proportionate affine projection algorithm for echo cancellation’, IEEE Signal Process. Lett., 2010, 17, (2), pp. 165168.
    18. 18)
      • 6. Enzner, G., Buchner, H., Favrot, A., et al: ‘Acoustic echo control’, in Chellappa, R., Theodoridis, S. (Eds.): ‘Academic press library in signal processing’ (Academic Press, Waltham, MA, USA, 2014), pp. 807877.
    19. 19)
      • 15. Yang, F., Wu, M., Ji, P., et al: ‘An improved multiband-structured subband adaptive filter algorithm’, IEEE Signal Process. Lett., 2012, 19, (10), pp. 647650.
    20. 20)
      • 33. Meyer, C.: ‘Matrix analysis and applied linear algebra’ (SIAM, Philadelphia, PA, USA, 2000).
    21. 21)
      • 5. Malik, S., Enzner, G.: ‘State-space frequency-domain adaptive filtering for nonlinear acoustic echo cancellation’, IEEE Trans. Audio, Speech, Lang. Process., 2012, 20, (7), pp. 20652079.
    22. 22)
      • 13. Lee, K.A., Gan, W.S.: ‘Improving convergence of the NLMS algorithm using constrained subband updates’, IEEE Signal Process. Lett., 2004, 11, (9), pp. 736739.
    23. 23)
      • 23. Yang, F., Wu, M., Ji, P., et al: ‘Transient and steady-state analyses of the improved multiband-structured subband adaptive filter algorithm’, IET Signal Process., 2015, 9, (8), pp. 596604.
    24. 24)
      • 26. Yang, F., Yang, J.: ‘Fast implementation of a family of memory proportionate affine projection algorithm’. Proc. IEEE ICASSP, Brisbane, Australia, April 2015, pp. 35073511.
    25. 25)
      • 34. Yang, F., Wu, M., Yang, J., et al: ‘A fast exact filtering approach to a family of affine projection-type algorithms’, Signal Process., 2014, 101, pp. 110.
    26. 26)
      • 10. Vijayakumar, R.: ‘A subband Kalman filter for echo cancellation’. Master thesis, Missouri University of Science and Technology, 2015.
    27. 27)
      • 12. Pradhan, S.S., Reddy, V.E.: ‘A new approach to subband adaptive filtering’, IEEE Trans. Signal Process., 1999, 47, (3), pp. 655664.
    28. 28)
      • 17. Glentis, G.O.: ‘An efficient implementation of the memory improved proportionate affine projection algorithm’, Signal Process., 2016, 118, pp. 2535.
    29. 29)
      • 9. Ciochină, S., Paleologu, C., Benesty, J., et al: ‘An optimized affine projection algorithm for acoustic echo cancellation’. Proc. 2015 Int. Conf. on Speech Technology and Human-Computer Dialogue (SpeD), Bucharest, Romania, October 2015, pp. 16.
    30. 30)
      • 22. Lee, K.A., Gan, W.S.: ‘On delayless architecture for the normalized subband adaptive filter’. Proc. IEEE ICME, Beijing, China, July 2007, pp. 15951598.
    31. 31)
      • 30. Tsakiris, M.C., Naylor, P.A.: ‘Fast exact affine projection algorithm using displacement structure theory’. Proc. 16th Int. Conf. on Digital Signal Processing, Santorini-Hellas, Greece, July 2009, pp. 6974.
    32. 32)
      • 7. Paleologu, C., Benesty, J., Ciochină, S.: ‘Study of the general Kalman filter for echo cancellation’, IEEE Trans. Audio, Speech, Lang. Process., 2013, 21, (8), pp. 15391549.
    33. 33)
      • 4. Enzner, G., Vary, P.: ‘Frequency-domain adaptive Kalman filter for acoustic echo control in hands-free telephones’, Signal Process., 2006, 86, (6), pp. 11401156.
    34. 34)
      • 36. Mitra, S.K.: ‘Digital signal processing: a computer based approach’ (McGraw-Hill, New York, 2006).
    35. 35)
      • 18. Farhang-Boroujeny, B.: ‘Adaptive filters: theory and applications’ (John Wiley & Sons, Chichester, U.K, 2013).
    36. 36)
      • 1. Kalman, R.E.: ‘A new approach to linear filtering and prediction problems’, J. Basic Eng., 1960, 82, pp. 3545.
    37. 37)
      • 27. Tanaka, M., Kaneda, Y., Makino, S., et al: ‘Fast projection algorithm and its step size control’. Proc. IEEE ICASSP, Detroit, MI, USA, May 1995, pp. 945948.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0313
Loading

Related content

content/journals/10.1049/iet-spr.2017.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address